Extrusion compression molded critical rare earth free bonded permanent magnets

被引:0
|
作者
Paranthaman, Mariappan Parans [1 ]
Parmar, Harshida [2 ]
Mungale, Kaustubh [1 ,3 ,4 ,5 ]
Kemp, James W. [1 ]
Wang, Haobo [1 ]
Nlebedim, Ikenna C. [2 ]
Vaidya, Uday Kumar [3 ,4 ,5 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[2] Ames Natl Lab, Crit Mat Innovat Hub, Ames, IA 50011 USA
[3] Univ Tennessee, Tickle Coll Engn, Knoxville, TN 37996 USA
[4] Mfg Sci Div, Oak Ridge Natl Lab, Knoxville, TN 37932 USA
[5] Inst Adv Composites Mfg Innovat, Knoxville, TN 37932 USA
来源
MATERIALIA | 2025年 / 39卷
关键词
Critical rare earth free magnets; Sm-Fe-N; Extrusion compression molding; Bonded magnets; Magnetic properties; COERCIVITY;
D O I
10.1016/j.mtla.2025.102359
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Samarium iron nitride (Sm-Fe-N) bonded magnets have emerged as promising candidates for various industrial applications due to their exceptional magnetic properties. Compounds with magnetic material 95 wt fraction (wt. %) (similar to 74 vol%) and 97 wt.% (similar to 81 vol%) of SmFeN in a polyamide (PA12) polymer binder are manufactured using a batch mixer followed by compression molding. A maximum energy product (BH)(max) of 186.21 kJ.m(-3) (23.4 MGOe) is achieved in the 95 wt.% bonded magnets; 97 wt.% magnets had a (BH)(max) of 165.52 kJ.m(-3) (20.8 MGOe). It is found that the degree of alignment (DoA) of 99 % is achieved in the 95 wt.% magnets, whereas the 97 wt.% magnets are limited to a DoA of 90 % respectively. The high DoA can be attributed to low particleparticle interaction during the post-magnetic field alignment process. This research provides a useful insight of binder-particle interactions at very high magnet weight fractions and their effect on magnetic strength and performance.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Social LCA for rare earth NdFeB permanent magnets
    Werker, Jasmin
    Wulf, Christina
    Zapp, Petra
    Schreiber, Andrea
    Marx, Josefine
    SUSTAINABLE PRODUCTION AND CONSUMPTION, 2019, 19 : 257 - 269
  • [42] Permanent Magnets of Cobalt/Rare Earth Alloys.
    Schaefer, Gerhard
    DEW Technische Berichte, 1973, 13 (03): : 185 - 188
  • [43] Studies of new rare-earth permanent magnets
    Morrish, AH
    Li, ZW
    Zhou, XZ
    Dai, S
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (09) : 2290 - 2296
  • [44] Bremsstrahlung radiation effects in rare earth permanent magnets
    Luna, Henry B.
    Maruyama, Xavier K.
    Colella, Nicholas J.
    Hobbs, John S.
    Hornady, Robert S.
    Kulke, Bernhard
    Palomar, James V.
    Nuclear instruments and methods in physics research, 1989, 285 (1-2): : 349 - 354
  • [46] Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets
    Li Zhu-Bai
    Li Yun
    Qin Yuan
    Zhang Xue-Feng
    Shen Bao-Gen
    ACTA PHYSICA SINICA, 2019, 68 (17)
  • [47] New structures of Fe3S for rare-earth-free permanent magnets
    Yu, Shu
    Zhao, Xin
    Wu, Shunqing
    Manh Cuong Nguyen
    Zhu, Zi-zhong
    Wang, Cai-Zhuang
    Ho, Kai-Ming
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (07)
  • [48] Designing rare-earth free permanent magnets in heusler alloys via interstitial doping
    Gao, Qiang
    Opahle, Ingo
    Gutfleisch, Oliver
    Zhang, Hongbin
    ACTA MATERIALIA, 2020, 186 : 355 - 362
  • [49] Data-driven design of a new class of rare-earth free permanent magnets
    Vishina, Alena
    Hedlund, Daniel
    Shtender, Vitalii
    Delczeg-Czirjak, Erna K.
    Larsen, Simon R.
    Vekilova, Olga Yu
    Huang, Shuo
    Vitos, Levente
    Svedlindh, Peter
    Sahlberg, Martin
    Eriksson, Olle
    Herper, Heike C.
    ACTA MATERIALIA, 2021, 212
  • [50] The phase transformation behavior of Mn-Al rare-earth-free permanent magnets
    Keller, Thomas
    Barbagallo, Dylan
    Sheremetyeva, Natalya
    Ghosh, Tushar Kanti
    Shanks, Katherine S.
    Hautier, Geoffroy
    Baker, Ian
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 587