Extrusion compression molded critical rare earth free bonded permanent magnets

被引:0
|
作者
Paranthaman, Mariappan Parans [1 ]
Parmar, Harshida [2 ]
Mungale, Kaustubh [1 ,3 ,4 ,5 ]
Kemp, James W. [1 ]
Wang, Haobo [1 ]
Nlebedim, Ikenna C. [2 ]
Vaidya, Uday Kumar [3 ,4 ,5 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[2] Ames Natl Lab, Crit Mat Innovat Hub, Ames, IA 50011 USA
[3] Univ Tennessee, Tickle Coll Engn, Knoxville, TN 37996 USA
[4] Mfg Sci Div, Oak Ridge Natl Lab, Knoxville, TN 37932 USA
[5] Inst Adv Composites Mfg Innovat, Knoxville, TN 37932 USA
来源
MATERIALIA | 2025年 / 39卷
关键词
Critical rare earth free magnets; Sm-Fe-N; Extrusion compression molding; Bonded magnets; Magnetic properties; COERCIVITY;
D O I
10.1016/j.mtla.2025.102359
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Samarium iron nitride (Sm-Fe-N) bonded magnets have emerged as promising candidates for various industrial applications due to their exceptional magnetic properties. Compounds with magnetic material 95 wt fraction (wt. %) (similar to 74 vol%) and 97 wt.% (similar to 81 vol%) of SmFeN in a polyamide (PA12) polymer binder are manufactured using a batch mixer followed by compression molding. A maximum energy product (BH)(max) of 186.21 kJ.m(-3) (23.4 MGOe) is achieved in the 95 wt.% bonded magnets; 97 wt.% magnets had a (BH)(max) of 165.52 kJ.m(-3) (20.8 MGOe). It is found that the degree of alignment (DoA) of 99 % is achieved in the 95 wt.% magnets, whereas the 97 wt.% magnets are limited to a DoA of 90 % respectively. The high DoA can be attributed to low particleparticle interaction during the post-magnetic field alignment process. This research provides a useful insight of binder-particle interactions at very high magnet weight fractions and their effect on magnetic strength and performance.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The comparison of anisotropic (and isotropic) powders for polymer bonded rare earth permanent magnets
    Brown, DN
    Campbell, P
    Ma, BM
    RARE EARTH MAGNETS AND THEIR APPLICATIONS, 2002, : 62 - 73
  • [2] High density rare earth bonded magnets employing warm compression molding
    Yamazaki, Soichi
    Yamagami, Toshiaki
    Shiobara, Kiyoshi
    Akioka, Koji
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46 (06): : 599 - 603
  • [3] Applications of rare earth permanent magnets
    Fastenau, RHJ
    vanLoenen, EJ
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1996, 157 : 1 - 6
  • [4] Magnetic properties of rare earth bonded magnets
    Tokunaga, Masaaki
    1600, (35):
  • [5] Rare-earth-free MnAl-C-Ni permanent magnets produced by extrusion of powder milled from bulk
    Feng, Le
    Freudenberger, Jens
    Mix, Torsten
    Nielsch, Kornelius
    Woodcock, Thomas George
    ACTA MATERIALIA, 2020, 199 : 155 - 168
  • [6] Heavy rare earth free, free rare earth and rare earth free magnets - Vision and reality
    Skokov, K. P.
    Gutfleisch, O.
    SCRIPTA MATERIALIA, 2018, 154 : 289 - 294
  • [7] Development Trends in Nd-reduced/free Rare Earth Permanent Magnets
    Kim, Sumin
    Kim, Tae-Hoon
    Cha, Hee-Ryoung
    Lee, Jung-Goo
    JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2024, 34 (02): : 53 - 64
  • [8] Current progress and future challenges in rare-earth-free permanent magnets
    Cui, Jun
    Kramer, Matthew
    Zhou, Lin
    Liu, Fei
    Gabay, Alexander
    Hadjipanayis, George
    Balasubramanian, Balamurugan
    Sellmyer, David
    ACTA MATERIALIA, 2018, 158 : 118 - 137
  • [9] Dense arrays of cobalt nanorods as rare-earth free permanent magnets
    Anagnostopoulou, E.
    Grindi, B.
    Lacroix, L. -M.
    Ott, F.
    Panagiotopoulos, I.
    Viau, G.
    NANOSCALE, 2016, 8 (07) : 4020 - 4029
  • [10] Temperature coefficients of rare earth permanent magnets
    Liu, S
    Kuhl, GE
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) : 3271 - 3273