Background Schizophrenia may be exacerbated by ambient air pollution. In this study, we aim to explore the association of air pollution with hospital admission for schizophrenia in Liuzhou, China. Methods The daily concentration of air pollutants was gathered from an average of seven fixed monitoring sites in Liuzhou, while the daily admission data for schizophrenia was received from The Guangxi Zhuang Autonomous Region Brain Hospital. A Poisson generalized linear regression model in conjunction with a distributed lag nonlinear model was utilized to quantify the exposure-lag-response connection between ambient air pollution and schizophrenia hospitalization. The stratification analysis was then carried out by age, gender, and season. Results PM2.5, PM10, and SO2 was significantly associated with elevated number of schizophrenia hospitalization. We observed the largest single-day effects of PM2.5 at lag 17 day, PM10 at lag 17 day, and SO2 at lag 28 day, with the corresponding RRs being 1.01611 (95% CI:1.00652-1.02579), 1.01648 (95% CI:1.00603-1.02704), and 1.02001 (95% CI: 1.00001-1.04041), respectively. Stratification analysis revealed that patients who were < 45 years old and female were more vulnerable to hospitalization due to exposure to PM2.5 and PM10. The effects of PM2.5 and PM10 were more noticeable during the cooler seasons than during the warmer one. Conclusions This study reveals that being exposed to PM2.5, PM10, and SO2 may increase the chance of schizophrenia hospitalization.