Cross-scale prediction for the Laurentian Great Lakes

被引:0
|
作者
Zhang, Y. Joseph [1 ]
Anderson, Joshua [2 ]
Wu, Chin H. [2 ]
Beletsky, Dmitry [3 ]
Liu, Yuli [4 ]
Huang, Wei [5 ]
Anderson, Eric J. [6 ]
Moghimi, Saeed [7 ]
Myers, Edward [7 ]
机构
[1] William & Mary, Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA
[2] Univ Wisconsin Madison, Madison, WI USA
[3] Univ Michigan, CIGLR, Ann Arbor, MI USA
[4] Nanjing Univ Informat, Nanjing, Peoples R China
[5] Florida Int Univ, Miami, FL USA
[6] Colorado Sch Mines, Civil & Environm Engn, Golden, CO USA
[7] NOAA, Coast Survey Dev Lab, Silver Spring, MD 20910 USA
关键词
Compound flooding; Great Lakes; Cross-scale modeling; SCHISM; THERMAL STRUCTURE; SUMMER CIRCULATION; NUMERICAL-MODELS; VERIFICATION; ONTARIO; SYSTEM; BAY; 3D;
D O I
10.1016/j.ocemod.2025.102512
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this paper, for the first time, all five Great Lakes are simulated using a 3D baroclinic model using a single, seamless unstructured mesh without nesting, including adjacent flood plains and watershed inflows to better connect the hydrodynamic model to the hydrologic model. The hydraulic controls at Sault St Marie and Niagara Falls are simulated using an internal flow boundary approach with the observed flow. The model is shown to exhibit good skills for total water level (TWL) and temperature, with RMSE of 9.5 cm for TWL and similar to 1.6 degrees C for surface temperature and temperature profiles from a 60-day simulation. Sensitivity results reveal the importance of hydrologic forcing even for this short-term simulation. Results from a 210-day simulation indicate that the model is capable of capturing major lake-wide circulation patterns discussed in previous studies and providing further details in those patterns. The new model can potentially serve as a base to unify Great Lakes modeling while simultaneously providing flexibility for site specific studies in any areas of interest.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Interactive mapping of nonindigenous species in the Laurentian Great Lakes
    Smith, Joeseph P.
    Lower, El K.
    Martinez, Felix A.
    Riseng, Catherine M.
    Mason, Lacey A.
    Rutherford, Edward S.
    Neilson, Matthew
    Fuller, Pam
    Wehrly, Kevin E.
    Sturtevant, Rochelle A.
    MANAGEMENT OF BIOLOGICAL INVASIONS, 2019, 10 (01): : 192 - 199
  • [32] Recent Trends In Laurentian Great Lakes Ice Cover
    Raymond Assel
    Kevin Cronk
    David Norton
    Climatic Change, 2003, 57 : 185 - 204
  • [33] Land and water governance on the shores of the Laurentian Great Lakes
    Norton, Richard K.
    Meadows, Guy A.
    WATER INTERNATIONAL, 2014, 39 (06) : 901 - 920
  • [34] HYDRAULIC RESIDENCE TIMES FOR THE LAURENTIAN GREAT-LAKES
    QUINN, FH
    JOURNAL OF GREAT LAKES RESEARCH, 1992, 18 (01) : 22 - 28
  • [35] Can tropical macrophytes establish in the Laurentian Great Lakes?
    Hugh J. MacIsaac
    Amanda P. Eyraud
    Boris Beric
    Sara Ghabooli
    Hydrobiologia, 2016, 767 : 165 - 174
  • [36] Recent trends in Laurentian Great Lakes ice cover
    Assel, R
    Cronk, K
    Norton, D
    CLIMATIC CHANGE, 2003, 57 (1-2) : 185 - 204
  • [37] Fate and transport of tritium in the Laurentian Great Lakes system
    King-Sharp, Karen J.
    Frape, Shaun K.
    JOURNAL OF GREAT LAKES RESEARCH, 2020, 46 (03) : 500 - 507
  • [38] Lake levels in the Erie Basin of the Laurentian Great Lakes
    C. F. M. Lewis
    G. D. M. Cameron
    T. W. Anderson
    C. W. Heil
    P. L. Gareau
    Journal of Paleolimnology, 2012, 47 : 493 - 511
  • [39] Contaminated sediment remediation in the Laurentian Great Lakes: an overview
    Zarull, MA
    Hartig, JH
    Krantzberg, G
    WATER QUALITY RESEARCH JOURNAL OF CANADA, 2001, 36 (03): : 351 - 365
  • [40] Lake levels in the Erie Basin of the Laurentian Great Lakes
    Lewis, C. F. M.
    Cameron, G. D. M.
    Anderson, T. W.
    Heil, C. W., Jr.
    Gareau, P. L.
    JOURNAL OF PALEOLIMNOLOGY, 2012, 47 (03) : 493 - 511