A Tetrahydropyran-Based Weakly Solvating Electrolyte for Low-Temperature and High-Voltage Lithium Metal Batteries

被引:0
|
作者
Li, Zezhuo [1 ]
Liao, Yaqi [1 ]
Ji, Haijin [1 ]
Lin, Xing [1 ]
Wei, Ying [1 ]
Hao, Shuaipeng [1 ]
Hu, Xueting [1 ]
Yuan, Lixia [1 ]
Huang, Zhimei [2 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
electrode/electrolyte interface; lithium metal battery; low-temperature electrolyte; tetrahydropyran; weakly solvating electrolyte; ETHER ELECTROLYTES; PERFORMANCE; CHALLENGES;
D O I
10.1002/aenm.202404120
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ether-based electrolytes show great potential in low-temperature lithium metal batteries (LMBs) for their low viscosity and decent reduction stability. However, conventional ethers with multidentate chelate sites suffer from low oxidation stability and high desolvation energy barrier due to the strong coordination between oxygen and Li+. Herein, cyclic tetrahydropyran (THP) with a unidentate site is designed as a solvent, and fluoroethylene carbonate (FEC) and lithium nitrate (LiNO3) serve as additives for low-temperature LMBs. The cyclic strain and unidentate chelate effect endow THP with a weak affinity to Li+ ions, which accelerates Li+ desolvation process and induces the anion-derived electrode/electrolyte interface at low temperature. The formed inorganic-rich interface further improves the oxidation stability and expedites the interfacial ion transportation. As a result, the assembled Li-LiNi0.8Mn0.1Co0.1O2 (NMC811) cell stably cycles with 87% capacity retention after 100 cycles at -40 degrees C and 4.5 V. The 2.7 Ah Li-NMC811 pouch cell with an energy density of 403 Wh kg-1 delivers 53% of the room-temperature capacity at -50 degrees C. This work reveals that regulating the chelate site of solvents can well optimize the electrolytes to realize low-temperature LMBs.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Weakly solvating ester electrolyte for high voltage sodium-ion batteries
    Jayakumar, Rishivandhiga
    Pollard, Travis P.
    Borodin, Oleg
    Shipitsyn, Vadim
    Chak, Chanmonirath
    Pastel, Glenn
    Zheng, Allen
    Johnson, Michel
    Hasan, Fuead
    Bejger, Christopher M.
    Schroeder, Marshall A.
    Greenbaum, Steve G.
    Zuo, Wenhua
    Ma, Lin
    NANO ENERGY, 2024, 128
  • [22] A High-Voltage Lithium-Metal Batteries Electrolyte Based on Fully-Methylated Pivalonitrile
    Li, Shaopeng
    Fang, Shan
    Li, Zhiwei
    Chen, Weiyi
    Dou, Hui
    Zhang, Xiaogang
    BATTERIES & SUPERCAPS, 2022, 5 (04)
  • [23] Low-temperature and high-voltage Zn-based liquid metal batteries based on multiple redox mechanism
    Zhao, Wang
    Li, Ping
    Han, Kun
    Cui, Kaixuan
    Liu, Chunrong
    Tan, Qiwei
    Qu, Xuanhui
    JOURNAL OF POWER SOURCES, 2020, 463
  • [24] Simultaneous Stabilization of the Solid/Cathode Electrolyte Interface in Lithium Metal Batteries by a New Weakly Solvating Electrolyte
    Pham, Thuy Duong
    Lee, Kyung-Koo
    SMALL, 2021, 17 (20)
  • [25] Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries
    Li, Tao
    Zhang, Xue-Qiang
    Shi, Peng
    Zhang, Qiang
    JOULE, 2019, 3 (11) : 2647 - 2661
  • [26] Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries
    Su, Chi-Cheung
    He, Meinan
    Cai, Mei
    Shi, Jiayan
    Amine, Rachid
    Rago, Nancy Dietz
    Guo, Juchen
    Rojas, Tomas
    Ngo, Anh T.
    Amine, Khalil
    NANO ENERGY, 2022, 92
  • [27] A Semisolvated Sole-Solvent Electrolyte for High-Voltage Lithium Metal Batteries
    Piao, Zhihong
    Wu, Xinru
    Ren, Hong-Rui
    Lu, Gongxun
    Gao, Runhua
    Zhou, Guangmin
    Cheng, Hui-Ming
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (44) : 24260 - 24271
  • [28] Bianionic coordination solvation structure electrolyte for high-voltage lithium metal batteries
    Sun, Miaolan
    Xie, Yuxiang
    Zhong, Cong
    Huang, Yixin
    Chen, Hui
    Huang, Huayu
    Dai, Peng
    Liu, Shishi
    Zheng, Weichen
    Liu, Chengyong
    Liao, Shangju
    Huang, Ling
    Sun, Shigang
    Wang, Xuefeng
    ENERGY STORAGE MATERIALS, 2024, 65
  • [29] Solid Electrolyte: the Key for High-Voltage Lithium Batteries
    Li, Juchuan
    Ma, Cheng
    Chi, Miaofang
    Liang, Chengdu
    Dudney, Nancy J.
    ADVANCED ENERGY MATERIALS, 2015, 5 (04)
  • [30] Research on the High-Voltage Electrolyte for Lithium Ion Batteries
    Zhang Lingling
    Ma Yulin
    Du Chunyu
    Yin Geping
    PROGRESS IN CHEMISTRY, 2014, 26 (04) : 553 - 559