Random Forest estimation of the ordered choice model

被引:0
|
作者
Lechner, Michael [1 ,2 ,3 ,4 ,5 ]
Okasa, Gabriel [1 ,6 ]
机构
[1] Univ St Gallen SEW HSG, Swiss Inst Empir Econ Res, Rosenberg str 22, CH-9000 St Gallen, Switzerland
[2] CEPR, London, England
[3] CESifo, Munich, Germany
[4] IAB, Nurnberg, Germany
[5] IZA, Bonn, Germany
[6] Swiss Natl Sci Fdn SNSF, Wildhainweg 3, CH-3001 Bern, Switzerland
关键词
Ordered choice models; Random Forests; Probabilities; Marginal effects; Machine learning; C14; C25; C40; SEMIPARAMETRIC ESTIMATION; PREDICTION; HEALTH; CLASSIFICATION;
D O I
10.1007/s00181-024-02646-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we develop a new machine learning estimator for ordered choice models based on the Random Forest. The proposed Ordered Forest flexibly estimates the conditional choice probabilities while taking the ordering information explicitly into account. In addition to common machine learning estimators, it enables the estimation of marginal effects as well as conducting inference and thus provides the same output as classical econometric estimators. An extensive simulation study reveals a good predictive performance, particularly in settings with nonlinearities and high correlation among covariates. An empirical application contrasts the estimation of marginal effects and their standard errors with an Ordered Logit model. A software implementation of the Ordered Forest is provided both in R and Python in the package orf available on CRAN and PyPI, respectively.
引用
收藏
页码:1 / 106
页数:106
相关论文
共 50 条
  • [41] Dynamic multinomial ordered choice with an application to the estimation of monetary policy rules
    Basu, Deepankar
    de Jong, Robert M.
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2008, 11 (04):
  • [42] A Unified Framework for Random Forest Prediction Error Estimation
    Lu, Benjamin
    Hardin, Johanna
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [43] A unified framework for random forest prediction error estimation
    Lu, Benjamin
    Hardin, Johanna
    Journal of Machine Learning Research, 2021, 22
  • [44] Investigating the use of random forest in software effort estimation
    Abdelali, Zakrani
    Mustapha, Hain
    Abdelwahed, Namir
    SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2018), 2019, 148 : 343 - 352
  • [45] Tree aggregation for random forest class probability estimation
    Sage, Andrew J.
    Genschel, Ulrike
    Nettleton, Dan
    STATISTICAL ANALYSIS AND DATA MINING, 2020, 13 (02) : 134 - 150
  • [46] Root zone soil moisture estimation with Random Forest
    Carranza, Coleen
    Nolet, Corjan
    Pezij, Michiel
    van der Ploeg, Martine
    JOURNAL OF HYDROLOGY, 2021, 593
  • [47] Random forest-based multipath parameter estimation
    Qi, Xin
    Xu, Bing
    Wang, Zhipeng
    Hsu, Li-Ta
    GPS SOLUTIONS, 2024, 28 (03)
  • [48] Random forest estimation of conditional distribution functions and conditional
    Elie-Dit-Cosaque, Kevin
    Maume-Deschamps, Veronique
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 6553 - 6583
  • [49] Estimation of Maize Yield Based on Random Forest Regression
    Wang P.
    Qi X.
    Li L.
    Wang L.
    Xu L.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (07): : 237 - 245
  • [50] Employee Attrition Estimation Using Random Forest Algorithm
    Pratt, Madara
    Boudhane, Mohcine
    Cakula, Sarma
    BALTIC JOURNAL OF MODERN COMPUTING, 2021, 9 (01): : 49 - 66