Finding Needles in a Haystack: A Black-Box Approach to Invisible Watermark Detection

被引:0
|
作者
Pan, Minzhou [1 ,2 ]
Wang, Zhenting [2 ,3 ]
Dong, Xin [2 ]
Sehwag, Vikash [2 ]
Lyu, Lingjuan [2 ]
Lin, Xue [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
[2] Sony AI, Boston, MA 02129 USA
[3] Rutgers State Univ, New Brunswick, NJ USA
来源
基金
美国国家科学基金会;
关键词
Watermark Detection; Black-box Detection; IP Protection;
D O I
10.1007/978-3-031-73414-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose WaterMark Detector (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given detection dataset using a clean non-watermarked dataset as a reference, without relying on specific decoding methods or prior knowledge of the watermarking techniques. We develop WMD using foundations of offset learning, where a clean non-watermarked dataset enables us to isolate the influence of only watermarked samples in the reference dataset. Our comprehensive evaluations demonstrate the effectiveness of WMD, which significantly outperforms naive detection methods with AUC scores around only 0.5. In contrast, WMD consistently achieves impressive detection AUC scores, surpassing 0.9 in most single-watermark datasets and exceeding 0.7 in more challenging multi-watermark scenarios across diverse datasets and watermarking methods. As invisible watermarks become increasingly prevalent, while specific decoding techniques remain undisclosed, our approach provides a versatile solution and establishes a path toward increasing accountability, transparency, and trust in our digital visual content.
引用
收藏
页码:253 / 270
页数:18
相关论文
共 50 条
  • [21] Nonlinear system identification: finding structure in nonlinear black-box models
    Dreesen, Philippe
    Tiels, Koen
    Ishteva, Mariya
    Schoukens, Johan
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [22] Drift Detection for Black-Box Deep Learning Models
    Piano, Luca
    Garcea, Fabio
    Cavallone, Andrea
    Vazquez, Ignacio Aparicio
    Morra, Lia
    Lamberti, Fabrizio
    IT PROFESSIONAL, 2024, 26 (02) : 24 - 31
  • [23] Malware Detection Using Black-Box Neural Method
    Pieczynski, Dominik
    Jedrzejek, Czeslaw
    MULTIMEDIA AND NETWORK INFORMATION SYSTEMS, 2019, 833 : 180 - 189
  • [24] Fault detection and isolation with nonlinear black-box models
    Zhang, QH
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 1163 - 1168
  • [25] Using nonlinear black-box models in fault detection
    Zhang, QH
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 636 - 637
  • [26] Explaining the black-box smoothly-A counterfactual approach
    Singla, Sumedha
    Eslami, Motahhare
    Pollack, Brian
    Wallace, Stephen
    Batmanghelich, Kayhan
    MEDICAL IMAGE ANALYSIS, 2023, 84
  • [27] Pothole Detection System Using a Black-box Camera
    Jo, Youngtae
    Ryu, Seungki
    SENSORS, 2015, 15 (11) : 29316 - 29331
  • [28] AUTOMOTIVE THERMAL COMFORT CONTROL - A BLACK-BOX APPROACH
    Kranz, J.
    van Niekerk, T. I.
    Holdack-Janssen, H. F. G.
    Gruhler, G.
    SAIEE AFRICA RESEARCH JOURNAL, 2012, 103 (02): : 66 - 76
  • [29] A black-box approach to performance analysis of grid middleware
    Alexius, Per
    Elahi, B. Maryam
    Hedman, Fredrik
    Mucci, Phillip
    Netzer, Gilbert
    Shah, Zeeshan Ali
    EURO-PAR 2007 WORKSHOPS: PARALLEL PROCESSING, 2008, 4854 : 62 - 71
  • [30] BLOCK: A Black-box Approach for Detection of State Violation Attacks Towards Web Applications
    Li, Xiaowei
    Xue, Yuan
    27TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2011), 2011, : 247 - 256