Finding Needles in a Haystack: A Black-Box Approach to Invisible Watermark Detection

被引:0
|
作者
Pan, Minzhou [1 ,2 ]
Wang, Zhenting [2 ,3 ]
Dong, Xin [2 ]
Sehwag, Vikash [2 ]
Lyu, Lingjuan [2 ]
Lin, Xue [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
[2] Sony AI, Boston, MA 02129 USA
[3] Rutgers State Univ, New Brunswick, NJ USA
来源
基金
美国国家科学基金会;
关键词
Watermark Detection; Black-box Detection; IP Protection;
D O I
10.1007/978-3-031-73414-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose WaterMark Detector (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given detection dataset using a clean non-watermarked dataset as a reference, without relying on specific decoding methods or prior knowledge of the watermarking techniques. We develop WMD using foundations of offset learning, where a clean non-watermarked dataset enables us to isolate the influence of only watermarked samples in the reference dataset. Our comprehensive evaluations demonstrate the effectiveness of WMD, which significantly outperforms naive detection methods with AUC scores around only 0.5. In contrast, WMD consistently achieves impressive detection AUC scores, surpassing 0.9 in most single-watermark datasets and exceeding 0.7 in more challenging multi-watermark scenarios across diverse datasets and watermarking methods. As invisible watermarks become increasingly prevalent, while specific decoding techniques remain undisclosed, our approach provides a versatile solution and establishes a path toward increasing accountability, transparency, and trust in our digital visual content.
引用
收藏
页码:253 / 270
页数:18
相关论文
共 50 条
  • [1] Watermark embedding for black-box channels
    Miller, ML
    DIGITAL WATERMARKING, 2004, 2939 : 18 - 34
  • [2] Computerized seizure detection on ambulatory EEG Finding the needles in the haystack
    Juhasz, Csaba
    Berg, Michel
    NEUROLOGY, 2019, 92 (14) : 641 - 642
  • [3] Contention Detection by Throttling: a Black-box On-line Approach
    Vallone, Joel
    Birke, Robert
    Chen, Lydia Y.
    Falsafi, Babak
    2015 IEEE 23RD INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2015, : 237 - 242
  • [4] An Invisible Black-Box Backdoor Attack Through Frequency Domain
    Wang, Tong
    Yao, Yuan
    Xu, Feng
    An, Shengwei
    Tong, Hanghang
    Wang, Ting
    COMPUTER VISION, ECCV 2022, PT XIII, 2022, 13673 : 396 - 413
  • [5] Finding Needles in a Haystack: Missing Tag Detection in Large RFID Systems
    Yu, Jihong
    Chen, Lin
    Zhang, Rongrong
    Wang, Kehao
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2017, 65 (05) : 2036 - 2047
  • [6] Notes on Finding Black-Box Model of a Large Building
    Vana, Zdenek
    Kubecek, Jakub
    Ferkl, Lukas
    2010 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 2010, : 1017 - 1022
  • [7] Mitch: A Machine Learning Approach to the Black-Box Detection of CSRF Vulnerabilities
    Calzavara, Stefano
    Conti, Mauro
    Focardi, Riccardo
    Rabitti, Alvise
    Tolomei, Gabriele
    2019 4TH IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY (EUROS&P), 2019, : 528 - 543
  • [8] Black-box System Identification of CPS Protected by a Watermark-based Detector
    Guibene, Khalil
    Ayaida, Marwane
    Khoukhi, Lyes
    Messai, Nadhir
    PROCEEDINGS OF THE 2020 IEEE 45TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2020), 2020, : 341 - 344
  • [9] Automated black-box boundary value detection
    Dobslaw F.
    Feldt R.
    de Oliveira Neto F.G.
    PeerJ Computer Science, 2023, 9
  • [10] Automated black-box boundary value detection
    Dobslaw, Felix
    Feldt, Robert
    Neto, Francisco Gomes de Oliveira
    PEERJ COMPUTER SCIENCE, 2023, 9