Raman spectroscopy and machine learning for forensic document examination
被引:0
|
作者:
Lee, Yong Ju
论文数: 0引用数: 0
h-index: 0
机构:
Kookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South KoreaKookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South Korea
Lee, Yong Ju
[1
]
Jeong, Chang Woo
论文数: 0引用数: 0
h-index: 0
机构:
Chungnam Natl Univ, Grad Sch Sci Criminal Invest, Daejeon 34134, South KoreaKookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South Korea
Jeong, Chang Woo
[2
]
Kim, Hong Taek
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Elect Engn, Seoul, South KoreaKookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South Korea
Kim, Hong Taek
[3
]
Lee, Tai-Ju
论文数: 0引用数: 0
h-index: 0
机构:
Kookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South KoreaKookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South Korea
Lee, Tai-Ju
[1
]
Kim, Hyoung Jin
论文数: 0引用数: 0
h-index: 0
机构:
Kookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South KoreaKookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South Korea
Kim, Hyoung Jin
[1
]
机构:
[1] Kookmin Univ, Dept Forest Prod & Biotechnol, 77 Jeongneung Ro, Seoul 02707, South Korea
[2] Chungnam Natl Univ, Grad Sch Sci Criminal Invest, Daejeon 34134, South Korea
[3] Korea Univ, Dept Elect Engn, Seoul, South Korea
Forensics relies on the differentiation and classification of document papers, particularly in cases involving document forgery and fraud. In this study, document papers are classified by integrating Raman spectroscopy with machine learning models, namely, random forest (RF), support vector machines (SVMs), and feed-forward neural networks (FNNs). Among the machine learning models, the RF model effectively calculated the feature importance and identified the critical spectral region contributing to classification, enhancing the transparency and interpretability of the result. Spectral preprocessing with the first derivative significantly improved the classification performance. The spectral range 200-1650 cm-1 was identified as a highly informative region for differentiation, reducing the number of input variables from 756 to 360 while enhancing the model accuracy. The FNN model outperformed the RF and SVM models, with an F1 score of 0.968. The results underscore the potential of combining Raman spectroscopy with machine learning for forensic document examination, offering an interpretable, computationally efficient, and robust approach for paper classification.
机构:
Univ Rzeszow, Inst Phys, Rzeszow, PolandGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye
Jakubczyk, Pawel
Paja, Wieslaw
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rzeszow, Inst Comp Sci, Rzeszow, PolandGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye
Paja, Wieslaw
Pancerz, Krzysztof
论文数: 0引用数: 0
h-index: 0
机构:
John Paul II Catholic Univ Lublin, Inst Philosophy, Lublin, PolandGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye
Pancerz, Krzysztof
论文数: 引用数:
h-index:
机构:
Wosiak, Agnieszka
Yaylim, Ilhan
论文数: 0引用数: 0
h-index: 0
机构:
Istanbul Univ, Aziz Sancar Inst Mol Med, Istanbul, TurkiyeGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye
Yaylim, Ilhan
Gultekin, Guldal Inal
论文数: 0引用数: 0
h-index: 0
机构:
Okan Univ, Fac Med, Dept Physiol, Istanbul, TurkiyeGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye
Gultekin, Guldal Inal
Tarhan, Nevzat
论文数: 0引用数: 0
h-index: 0
机构:
Uskudar Univ, NP Hosp, Istanbul, TurkiyeGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye
Tarhan, Nevzat
Hakan, Mehmet Tolgahan
论文数: 0引用数: 0
h-index: 0
机构:
Istanbul Univ, Aziz Sancar Inst Mol Med, Istanbul, TurkiyeGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye
Hakan, Mehmet Tolgahan
Sonmez, Dilara
论文数: 0引用数: 0
h-index: 0
机构:
Istanbul Univ, Aziz Sancar Inst Mol Med, Istanbul, TurkiyeGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye
Sonmez, Dilara
Saribal, Devrim
论文数: 0引用数: 0
h-index: 0
机构:
Cerrahpasa Med Sch, Dept Biophys, Istanbul, TurkiyeGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye
Saribal, Devrim
Arikan, Soykan
论文数: 0引用数: 0
h-index: 0
机构:
Istanbul Educ & Res Hosp, Dept Gen Surg, Istanbul, Turkiye
Cam & Sakura City Hosp, Istanbul, TurkiyeGaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye