An inertial stochastic Bregman generalized alternating direction method of multipliers for nonconvex and nonsmooth optimization

被引:0
|
作者
Liu, Longhui [1 ]
Han, Congying [1 ]
Guo, Tiande [1 ]
Liao, Shichen [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Nonconvex nonsmooth optimization; Variance-reduced gradient; Stochastic generalized ADMM; Inertial technique; Bregman distance; PROXIMAL POINT ALGORITHM; MAXIMAL MONOTONE-OPERATORS; RACHFORD SPLITTING METHOD; CONVERGENCE ANALYSIS; COMPLEXITY ANALYSIS; MINIMIZATION; APPROXIMATION; DESCENT;
D O I
10.1016/j.eswa.2025.126939
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The alternating direction method of multipliers (ADMM) is a widely employed first-order method due to its efficiency and simplicity. Nonetheless, like other splitting methods, ADMM's performance degrades substantially as the scale of the optimization problems it addresses increases. This work is devoted to studying an accelerated stochastic generalized ADMM framework with a class of variance-reduced gradient estimators for solving large-scale nonconvex nonsmooth optimization problems with linear constraints, in which we combine inertial technique and Bregman distance. Under the assumption that the objective functions are semi-algebraic which satisfies the Kurdyka-& Lstrok;ojasiewicz (KL) property, we establish the global convergence and convergence rate of the sequence generated by our proposed algorithm. Finally, numerical experiments on conducting a graph-guided fused lasso illustrates the efficiency of the proposed method.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Alternating Direction Method of Multipliers for Sparse and Low-Rank Decomposition Based on Nonconvex Nonsmooth Weighted Nuclear Norm
    Yang, Zhenzhen
    Yang, Zhen
    Han, Deren
    IEEE ACCESS, 2018, 6 : 56945 - 56953
  • [42] Alternating direction method of multipliers for polynomial optimization
    Cerone, V.
    Fosson, S. M.
    Pirrera, S.
    Regruto, D.
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [43] An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant
    Xue Gao
    Xingju Cai
    Xiangfeng Wang
    Deren Han
    Journal of Global Optimization, 2023, 87 : 277 - 300
  • [44] A proximal alternating direction method of multipliers for a minimization problem with nonconvex constraints
    Peng, Zheng
    Chen, Jianli
    Zhu, Wenxing
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (04) : 711 - 728
  • [45] A Symmetric Alternating Direction Method of Multipliers for Separable Nonconvex Minimization Problems
    Wu, Zhongming
    Li, Min
    Wang, David Z. W.
    Han, Deren
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2017, 34 (06)
  • [46] CONVERGENCE ANALYSIS OF ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR A FAMILY OF NONCONVEX PROBLEMS
    Hong, Mingyi
    Luo, Zhi-Quan
    Razaviyayn, Meisam
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3836 - 3840
  • [47] A proximal alternating direction method of multipliers for a minimization problem with nonconvex constraints
    Zheng Peng
    Jianli Chen
    Wenxing Zhu
    Journal of Global Optimization, 2015, 62 : 711 - 728
  • [48] CONVERGENCE ANALYSIS OF ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR A FAMILY OF NONCONVEX PROBLEMS
    Hong, Mingyi
    Luo, Zhi-Quan
    Razaviyayn, Meisam
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 337 - 364
  • [49] Inertial proximal alternating minimization for nonconvex and nonsmooth problems
    Zhang, Yaxuan
    He, Songnian
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [50] Inertial proximal alternating minimization for nonconvex and nonsmooth problems
    Yaxuan Zhang
    Songnian He
    Journal of Inequalities and Applications, 2017