EEG-TCNTransformer: A Temporal Convolutional Transformer for Motor Imagery Brain-Computer Interfaces

被引:0
|
作者
Nguyen, Anh Hoang Phuc [1 ]
Oyefisayo, Oluwabunmi [1 ]
Pfeffer, Maximilian Achim [1 ]
Ling, Sai Ho [1 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
来源
SIGNALS | 2024年 / 5卷 / 03期
关键词
brain-computer interface; motor imagery; electroencephalography; convolutional neural network; transformer; self-attention; bandpass filter; TIME;
D O I
10.3390/signals5030034
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In brain-computer interface motor imagery (BCI-MI) systems, convolutional neural networks (CNNs) have traditionally dominated as the deep learning method of choice, demonstrating significant advancements in state-of-the-art studies. Recently, Transformer models with attention mechanisms have emerged as a sophisticated technique, enhancing the capture of long-term dependencies and intricate feature relationships in BCI-MI. This research investigates the performance of EEG-TCNet and EEG-Conformer models, which are trained and validated using various hyperparameters and bandpass filters during preprocessing to assess improvements in model accuracy. Additionally, this study introduces EEG-TCNTransformer, a novel model that integrates the convolutional architecture of EEG-TCNet with a series of self-attention blocks employing a multi-head structure. EEG-TCNTransformer achieves an accuracy of 83.41% without the application of bandpass filtering.
引用
收藏
页码:605 / 632
页数:28
相关论文
共 50 条
  • [21] Advanced TSGL-EEGNet for Motor Imagery EEG-Based Brain-Computer Interfaces
    Deng, Xin
    Zhang, Boxian
    Yu, Nian
    Liu, Ke
    Sun, Kaiwei
    IEEE ACCESS, 2021, 9 (09): : 25118 - 25130
  • [22] Channel Selection for Optimal EEG Measurement in Motor Imagery-Based Brain-Computer Interfaces
    Arpaia, Pasquale
    Donnarumma, Francesco
    Esposito, Antonio
    Parvis, Marco
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (03)
  • [23] The Application of Entropy in Motor Imagery Paradigms of Brain-Computer Interfaces
    Wu, Chengzhen
    Yao, Bo
    Zhang, Xin
    Li, Ting
    Wang, Jinhai
    Pu, Jiangbo
    BRAIN SCIENCES, 2025, 15 (02)
  • [24] Using Motor Imagery to Control Brain-Computer Interfaces for Communication
    Brumberg, Jonathan S.
    Burnison, Jeremy D.
    Pitt, Kevin M.
    FOUNDATIONS OF AUGMENTED COGNITION: NEUROERGONOMICS AND OPERATIONAL NEUROSCIENCE, AC 2016, PT I, 2016, 9743 : 14 - 25
  • [25] Input Shape Effect on Classification Performance of Raw EEG Motor Imagery Signals with Convolutional Neural Networks for Use in Brain-Computer Interfaces
    Ari, Emre
    Tacgin, Ertugrul
    BRAIN SCIENCES, 2023, 13 (02)
  • [26] Motor imagery performance from calibration to online control in EEG-based brain-computer interfaces
    Mousavi, Mahta
    de Sa, Virginia R.
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 491 - 494
  • [27] Classification of EEG Signals Based on Filter Bank and Sparse Representation in Motor Imagery Brain-Computer Interfaces
    Wang, Jin
    Wei, Qingguo
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (03)
  • [28] Crosstalk disrupts the production of motor imagery brain signals in brain-computer interfaces
    Neo, Phoebe S. -H.
    Mayne, Terence
    Fu, Xiping
    Huang, Zhiyi
    Franz, Elizabeth A.
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2021, 9 (01)
  • [29] Normalization of Feature Distribution in Motor Imagery Based Brain-Computer Interfaces
    Binias, Bartosz
    Grzejszczak, Tomasz
    Niezabitowski, Michal
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 1337 - 1342
  • [30] USING AUTOENCODERS FOR FEATURE ENHANCEMENT IN MOTOR IMAGERY BRAIN-COMPUTER INTERFACES
    Helal, Mahmoud A.
    Eldawlatly, Seif
    Taher, Mohamed
    2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 89 - 93