Deciphering the Role of PEGylation on the Lipid Nanoparticle-Mediated mRNA Delivery to the Liver

被引:0
|
作者
Gao, Menghua [1 ,2 ]
Zhong, Jiafeng [1 ]
Liu, Xinxin [1 ]
Zhao, Yanjun [3 ]
Zhu, Dingcheng [4 ]
Shi, Xiaohuo [5 ]
Xu, Xuehan [1 ]
Zhou, Qin [1 ,2 ]
Xuan, Wenjing [1 ,2 ]
Zhang, Yue [1 ]
Zhou, Yaofeng [1 ,2 ]
Cheng, Jianjun [1 ,2 ,6 ]
机构
[1] Westlake Univ, Sch Engn, Hangzhou 310030, Zhejiang, Peoples R China
[2] Westlake Inst Adv Study, Inst Adv Technol, Hangzhou 310024, Zhejiang, Peoples R China
[3] Tianjin Univ, Fac Med, Sch Pharmaceut Sci & Technol, Tianjin Key Lab Modern Drug Delivery & High Effici, Tianjin 300072, Peoples R China
[4] Hangzhou Normal Univ, Coll Life & Environm Sci, Hangzhou 310036, Zhejiang, Peoples R China
[5] Westlake Univ, Instrumentat & Serv Ctr Mol Sci, Hangzhou 310030, Peoples R China
[6] Westlake Univ, Res Ctr Ind Future, Hangzhou 310030, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
nanomedicine; drug delivery; mRNA; PEGylation; lipid nanoparticles;
D O I
10.1021/acsnano.4c09399
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organ- and cell-specific delivery of mRNA via modular lipid nanoparticles (LNPs) is promising in treating various diseases, but targeted cargo delivery is still very challenging. Most previous work focuses on screening ionizable and helper lipids to address the above issues. Here, we report the multifacial role of PEGylated lipids in manipulating LNP-mediated delivery of mRNA to the liver. We employed the typical excipients in LNP products, including DLin-MC3-DMA, DPSC, and cholesterol. Five types of PEGylated lipids were selected, and their molar ratio was fixed at 1.5% with a constant PEG molecular weight of 2000 Da. The architecture of steric lipids dramatically affected the in vitro gene transfection, in vivo blood clearance, liver deposition, and targeting of specific cells, all of which were closely linked to the de-PEGylation rate. The fast de-PEGylation resulted in short blood circulation and high accumulation in the liver. However, the ultrafast de-PEGylation enabled the deposition of more LNPs in Kupffer cells other than hepatocytes. Surprisingly, simply changing the terminal groups of PEGylated lipids from methoxyl to carboxyl or amine could dramatically increase the liver delivery of LNPs, which might be associated with the accelerated de-PEGylation rate and enhanced LNP-cell interaction. The current work highlights the importance of manipulating steric lipids in promoting mRNA delivery, offering an alternative approach for formulating and optimizing mRNA LNPs.
引用
收藏
页码:5966 / 5978
页数:13
相关论文
共 50 条
  • [21] Ionizable Lipid Nanoparticle-Mediated TRAIL mRNA Delivery in the Tumor Microenvironment to Inhibit Colon Cancer Progression
    Silva, Walison Nunes da
    Costa, Pedro Augusto Carvalho
    Scalzo Jr, Sergio Ricardo Aluotto
    Ferreira, Heloisa A. S.
    Prazeres, Pedro Henrique Dias Moura
    Campos, Caroline Leonel Vasconcelos
    Alves, Marco Tullio Rodrigues
    da Silva, Natalia Jordana Alves
    Santos, Ana Luiza de Castro
    Guimaraes, Lays Cordeiro
    Ferris, Maria Eduarda Chen
    Thatte, Ajay
    Hamilton, Alex
    Bicalho, Kelly Alves
    Lobo, Anderson Oliveira
    Santiago, Helton da Costa
    Barcelos, Luciola da Silva
    Figueiredo, Maria Marta
    Teixeira, Mauro Martins
    Costa, Vivian Vasconcelos
    Mitchell, Michael J.
    Frezard, Frederic
    Guimaraes, Pedro Pires Goulart
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2024, 19 : 2655 - 2673
  • [22] Boosting ionizable lipid nanoparticle-mediated in vivo mRNA delivery through optimization of lipid amine-head groups
    Ding, Feng
    Zhang, Hongqian
    Cui, Jiwei
    Li, Qiang
    Yang, Chuanxu
    BIOMATERIALS SCIENCE, 2021, 9 (22) : 7534 - 7546
  • [23] Noninvasive Imaging of Lipid Nanoparticle-Mediated Systemic Delivery of Small-Interfering RNA to the Liver
    Tao, Weikang
    Davide, Joseph P.
    Cai, Mingmei
    Zhang, Guo-Jun
    South, Victoria J.
    Matter, Andrea
    Ng, Bruce
    Zhang, Ye
    Sepp-Lorenzino, Laura
    MOLECULAR THERAPY, 2010, 18 (09) : 1657 - 1666
  • [24] In Vitro Engineering Chimeric Antigen Receptor Macrophages and T Cells by Lipid Nanoparticle-Mediated mRNA Delivery
    Ye, Zhongfeng
    Chen, Jinjin
    Zhao, Xuewei
    Li, Yamin
    Harmon, Joseph
    Huang, Changfeng
    Chen, Jianzhu
    Xu, Qiaobing
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2022, 8 (02) : 722 - 733
  • [25] Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery
    Ho, William
    Gao, Mingzhu
    Li, Fengqiao
    Li, Zhongyu
    Zhang, Xue-Qing
    Xu, Xiaoyang
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (08)
  • [26] Mathematical Modeling: A Tool for Optimization of Lipid Nanoparticle-Mediated Delivery of siRNA
    Mihaila, Radu
    Ruhela, Dipali
    Keough, Edward
    Cherkaev, Elena
    Chang, Silvia
    Galinski, Beverly
    Bartz, Rene
    Brown, Duncan
    Howell, Bonnie
    Cunningham, James J.
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2017, 7 : 246 - 255
  • [27] Fusogenic Coiled-Coil Peptides Enhance Lipid Nanoparticle-Mediated mRNA Delivery upon Intramyocardial Administration
    Zeng, Ye
    Senti, Mariona Estape
    Labonia, M. Clara I.
    Papadopoulou, Panagiota
    Brans, Maike A. D.
    Dokter, Inge
    Fens, Marcel H.
    van Mil, Alain
    Sluijter, Joost P. G.
    Schiffelers, Raymond M.
    Vader, Pieter
    Kros, Alexander
    ACS NANO, 2023, 17 (23) : 23466 - 23477
  • [28] NANOPARTICLE-MEDIATED DELIVERY OF CRYOPROTECTANTS FOR CRYOPRESERVATION
    Stewart, Samantha
    Arminan, Alyssa
    He, Xiaoming
    CRYOLETTERS, 2020, 41 (06) : 308 - 316
  • [29] Nanoparticle-Mediated Targeted Delivery of Immunosuppression
    Skartsis, N.
    Azzi, J.
    Tang, L.
    Mounayar, M.
    Ting, C.
    Moore, R.
    Cheng, J.
    Abdi, R.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2012, 12 : 97 - 97
  • [30] Nanoparticle-mediated Recombinase Delivery in Maize
    Wang, Kan
    Martin-Ortigosa, Susana
    Peterson, David J.
    Valenstein, Justin S.
    Trewyn, Brian G.
    Lyznik, L. Alexander
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2014, 50 : S21 - S22