Effect of Active MgO on Compensated Drying Shrinkage and Mechanical Properties of Alkali-Activated Fly Ash-Slag Materials

被引:0
|
作者
Ma, Hongqiang [1 ,2 ,3 ]
Li, Shiru [1 ]
Lei, Zelong [1 ]
Wu, Jialong [1 ]
Yuan, Xinhua [1 ]
Niu, Xiaoyan [1 ,2 ,3 ]
机构
[1] Hebei Univ, Coll Civil Engn & Architecture, Baoding 071002, Peoples R China
[2] Hebei Univ, Engn Res Ctr Zero Carbon Energy Bldg & Measurement, Minist Educ, Baoding 071002, Peoples R China
[3] Hebei Univ, Technol Innovat Ctr Testing & Evaluat Civil Engn H, Baoding 071002, Peoples R China
关键词
alkali-activated materials; MgO activity; drying shrinkage; mechanical properties; microstructure; CONCRETE PAVEMENT; EXPANSION AGENT; TEMPERATURE; RESISTANCE; HYDRATION; STRENGTH; BINDERS;
D O I
10.3390/buildings15020256
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The influences of MgO activity and its content on the mechanical properties, drying shrinkage compensation, pore structure, and microstructure of alkali-activated fly ash-slag materials were investigated. Active MgO effectively compensated for the alkali-activated materials' (AAMs') drying shrinkage. The drying shrinkage increased rapidly with the increase in curing age and stabilized after 28 d. Within a certain range, the material's drying shrinkage was inversely proportional to the content of active MgO. The higher the activity of MgO, the lower the drying shrinkage of the AAMs under the same MgO content. The drying shrinkage values of the test groups with 9% R-MgO, M-MgO, and S-MgO at 90 d were 2444 mu epsilon, 2306 mu epsilon, and 2156 mu epsilon, respectively. In the early stage of hydration, the addition of S-MgO reduced the compressive strength. As the content of M-MgO increased, the compressive strength first increased and then decreased, reaching a maximum of 72.28 MPa at an M-MgO content of 9%. The experimental group with 9% M-MgO exhibited higher compressive and flexural strengths than those with 9% S-MgO and R-MgO, demonstrating better mechanical properties. The results of this study provide an important theoretical basis and data support for the optimal application of MgO in AAMs. MgO expansion agents have great application potential in low-carbon buildings and durable materials. Further research on their adaptability in complex environments will promote their development for engineering and provide innovative support for green buildings.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Durability of alkali-activated fly ash-slag concrete- state of art
    Hamsashree
    Pandit, Poornachandra
    Prashanth, Shreelaxmi
    Katpady, Dhruva Narayana
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (06)
  • [32] Effect of polyether shrinkage reducing admixture on the drying shrinkage properties of alkali-activated slag
    Zhang, Wenyan
    Xue, Mengfen
    Lin, Huaxia
    Duan, Xiaohang
    Jin, Yuzhong
    Su, Faqiang
    CEMENT & CONCRETE COMPOSITES, 2023, 136
  • [33] The evolution of interfacial transition zone in alkali-activated fly ash-slag concrete
    Fang, Guohao
    Zhang, Mingzhong
    CEMENT AND CONCRETE RESEARCH, 2020, 129 (129)
  • [34] Effect of Polyphosphates on Properties of Alkali-Activated Slag/Fly Ash Concrete
    Mosleh, Youssef A.
    Gharieb, Mahmoud
    Rashad, Alaa M.
    ACI MATERIALS JOURNAL, 2023, 120 (02) : 65 - 76
  • [35] Effect of metakaolin on the autogenous shrinkage of alkali-activated slag-fly ash paste
    Li, Zhenming
    Liang, Xuhui
    Chen, Yun
    Ye, Guang
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 278
  • [36] Effect of Activator and Mineral Admixtures on the Autogenous Shrinkage of Alkali-Activated Slag/Fly Ash
    Ma, Yuwei
    Gong, Jihao
    Ye, Guang
    Fu, Jiyang
    SUSTAINABILITY, 2023, 15 (22)
  • [37] Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content
    Nedeljkovic, Marija
    Li, Zhenming
    Ye, Guang
    MATERIALS, 2018, 11 (11):
  • [38] Mechanical Properties of Fly Ash-Slag Based Alkali-Activated Materials under the Low-Energy Consummation-Sealed Curing Condition
    Zhang, Da-Wang
    Wang, Dong-min
    Li, Hui
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (10)
  • [39] Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h
    Fang, Guohao
    Bahrami, Hossein
    Zhang, Mingzhong
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 171 : 377 - 387
  • [40] STRENGTH AND DRYING SHRINKAGE OF ALKALI-ACTIVATED SLAG PASTES CONTAINING REACTIVE MGO
    Jin, Fei
    Gu, Kai
    Al-Tabbaa, Abir
    ADVANCES IN CHEMICALLY-ACTIVATED MATERIALS (CAM'2014), 2014, 92 : 319 - 328