Chromatic symmetric functions via the group algebra of Sn

被引:0
|
作者
Pawlowski, Brendan [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
ALGEBRAIC COMBINATORICS | 2022年 / 5卷 / 01期
关键词
Chromatic symmetric function; pointed chromatic symmetric function; Schur positivity; FACTORIZATIONS;
D O I
10.5802/alco.134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some Schur positivity results for the chromatic symmetric function X G of a (hyper)graph G , using connections to the group algebra of the symmetric group. The first such connection works for (hyper)forests F : we describe the Schur coefficients of X F in terms of eigenvalues of a product of Hermitian idempotents in the group algebra, one factor for each edge (a more general formula of similar shape holds for all chordal graphs). Our main application of this technique is to prove a conjecture of Taylor on the Schur positivity of certain X F , which implies Schur positivity of the formal group laws associated to various combinatorial generating functions. We also introduce the pointed chromatic symmetric function X G ,v associated to a rooted graph ( G, v ) . We prove that if X G,v and X H,w are positive in the generalized Schur basis of Strahov, then the chromatic symmetric function of the wedge sum of ( G, v ) and ( H, w ) is Schur positive.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] On the Hopf Algebra of Noncommutative Symmetric Functions in Superspace
    Arcis, Diego
    Gonzalez, Camilo
    Marquez, Sebastian
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [42] The Newton polytope and Lorentzian property of chromatic symmetric functions
    Matherne, Jacob P.
    Morales, Alejandro H.
    Selover, Jesse
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (03):
  • [43] The Chromatic Symmetric Functions of Trivially Perfect Graphs and Cographs
    Tsujie, Shuhei
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 1037 - 1048
  • [44] The Chromatic Symmetric Functions of Trivially Perfect Graphs and Cographs
    Shuhei Tsujie
    Graphs and Combinatorics, 2018, 34 : 1037 - 1048
  • [45] Chromatic symmetric functions and H-free graphs
    Hamel, Angele M.
    Hoang, Chinh T.
    Tuero, Jake E.
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 815 - 825
  • [46] Chromatic symmetric functions and H-free graphs
    Angèle M. Hamel
    Chính T. Hoàng
    Jake E. Tuero
    Graphs and Combinatorics, 2019, 35 : 815 - 825
  • [47] Specializations of MacMahon symmetric functions and the polynomial algebra
    Rosas, MH
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 285 - 293
  • [48] A composition method for neat formulas of chromatic symmetric functions
    Wang, David G. L.
    Zhou, James Z. F.
    ADVANCES IN APPLIED MATHEMATICS, 2025, 167
  • [49] A combinatorial formula for the Schur coefficients of chromatic symmetric functions
    Wang, David G. L.
    Wang, Monica M. Y.
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 621 - 630
  • [50] On the quiver presentation of the descent algebra of the symmetric group
    Bishop, Marcus
    Pfeiffer, Goez
    JOURNAL OF ALGEBRA, 2013, 383 : 212 - 231