Chromatic symmetric functions via the group algebra of Sn

被引:0
|
作者
Pawlowski, Brendan [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
ALGEBRAIC COMBINATORICS | 2022年 / 5卷 / 01期
关键词
Chromatic symmetric function; pointed chromatic symmetric function; Schur positivity; FACTORIZATIONS;
D O I
10.5802/alco.134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some Schur positivity results for the chromatic symmetric function X G of a (hyper)graph G , using connections to the group algebra of the symmetric group. The first such connection works for (hyper)forests F : we describe the Schur coefficients of X F in terms of eigenvalues of a product of Hermitian idempotents in the group algebra, one factor for each edge (a more general formula of similar shape holds for all chordal graphs). Our main application of this technique is to prove a conjecture of Taylor on the Schur positivity of certain X F , which implies Schur positivity of the formal group laws associated to various combinatorial generating functions. We also introduce the pointed chromatic symmetric function X G ,v associated to a rooted graph ( G, v ) . We prove that if X G,v and X H,w are positive in the generalized Schur basis of Strahov, then the chromatic symmetric function of the wedge sum of ( G, v ) and ( H, w ) is Schur positive.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] REGULAR FUNCTIONS ON THE GROUP-ALGEBRA OF THE SYMMETRIC GROUP
    SNYDER, HH
    WILKERSON, RW
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (05): : 781 - 800
  • [2] A study of symmetric functions via derived Hall algebra
    Shimoji, Ryosuke
    Yanagida, Shintarou
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (03) : 979 - 1005
  • [3] ON AN ALGEBRA OF SYMMETRIC FUNCTIONS
    MORRIS, AO
    QUARTERLY JOURNAL OF MATHEMATICS, 1965, 16 (61): : 53 - &
  • [4] The algebra of symmetric functions
    MacMahon, PA
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1923, 21 : 376 - 390
  • [5] Characters and chromatic symmetric functions
    Skandera, Mark
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [6] Chromatic classical symmetric functions
    Cho, Soojin
    van Willigenburg, Stephanie
    JOURNAL OF COMBINATORICS, 2018, 9 (02) : 401 - 409
  • [7] Chromatic Symmetric Functions of Hypertrees
    Taylor, Jair
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [8] Chromatic bases for symmetric functions
    Cho, Soojin
    van Willigenburg, Stephanie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):
  • [9] Chromatic polynomials and the symmetric group
    Pitteloud, P
    GRAPHS AND COMBINATORICS, 2004, 20 (01) : 131 - 144
  • [10] Chromatic Polynomials and the Symmetric Group
    Philippe Pitteloud
    Graphs and Combinatorics, 2004, 20 : 131 - 144