The stochastic gravitational wave background from primordial gravitational atoms

被引:0
|
作者
Kang, Zhaofeng [1 ]
Li, Tianjun [2 ,3 ,4 ]
Ye, Weitao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[4] Henan Normal Univ, Sch Phys, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
primordial black holes; gravitational waves / sources; BLACK-HOLES; MATTER;
D O I
10.1088/1475-7516/2024/11/039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a scenario of primordial gravitational atoms (PGAs), which may exist in the current and past universe due to spinning primordial black holes (PBHs) and very light bosonic fields. In a monochromatic mass scenario with a sizable dimensionless spin, which may arise in a short matter dominated (MD) era, we analyze the resulting stochastic gravitational wave background (SGWB) signal. Its spectrum is approximately characterized by a rising proportional to f3 followed by a falling proportional to f - 1 where f is the frequency. Then, we investigate the constraints and prospects of such an SGWB, and find that PGAs with a core mass M BH similar to O (10) M circle dot and a cloud of light scalar with mass mu similar to O (10 - 13 ) eV could yield constraints even stronger than those from bare PBHs. Future detectors such as LISA, Taiji and TianQin are able to explore PGAs over a narrow and elongated strap in the (mu, MBH) plane, spanning over 10 orders of magnitude for the maximum spin, 10-8 M circle dot <= M BH <= 104 M circle dot, 10 - 16 eV <= mu <= 10-3 eV. If the PGA is dressed with a vector cloud, the SGWB signal has a much better opportunity to be probed.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Anisotropies in the gravitational-wave stochastic background
    Oelmez, S.
    Mandic, V.
    Siemens, X.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (07):
  • [42] New Window into Stochastic Gravitational Wave Background
    Rotti, Aditya
    Souradeep, Tarun
    PHYSICAL REVIEW LETTERS, 2012, 109 (22)
  • [43] Astrometric Limits on the Stochastic Gravitational Wave Background
    Darling, Jeremy
    Truebenbach, Alexandra E.
    Paine, Jennie
    ASTROPHYSICAL JOURNAL, 2018, 861 (02):
  • [44] Gravitational wave stochastic background from cosmological particle decay
    Allen, Bruce
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [45] Early cosmology and the stochastic gravitational wave background
    Mendes, LE
    Liddle, AR
    PHYSICAL REVIEW D, 1999, 60 (06):
  • [46] Stochastic gravitational wave background from early dark energy
    Kitajima, Naoya
    Takahashi, Tomo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (10):
  • [47] Gravitational-wave stochastic background from cosmic strings
    Siemens, Xavier
    Mandic, Vuk
    Creighton, Jolien
    PHYSICAL REVIEW LETTERS, 2007, 98 (11)
  • [48] Resonant features in the stochastic gravitational wave background
    Fumagalli, Jacopo
    Renaux-Petel, Sebastien
    Witkowski, Lukas T.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [49] Astrometric effects of a stochastic gravitational wave background
    Book, Laura G.
    Flanagan, Eanna E.
    PHYSICAL REVIEW D, 2011, 83 (02):
  • [50] Stochastic gravitational wave background from global cosmic strings
    Chang, Chia-Feng
    Cui, Yanou
    PHYSICS OF THE DARK UNIVERSE, 2020, 29