Implicit Stochastic Gradient Descent for Training Physics-Informed Neural Networks

被引:0
|
作者
Li, Ye [1 ]
Chen, Song-Can [1 ]
Huang, Sheng-Jun [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol Artificial Intelligence, MIIT, Key Lab Pattern Anal & Machine Intelligence, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems, but they are still trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features. In this paper, we propose to employ implicit stochastic gradient descent (ISGD) method to train PINNs for improving the stability of training process. We heuristically analyze how ISGD overcome stiffness in the gradient flow dynamics of PINNs, especially for problems with multi-scale solutions. We theoretically prove that for two-layer fully connected neural networks with large hidden nodes, randomly initialized ISGD converges to a globally optimal solution for the quadratic loss function. Empirical results demonstrate that ISGD works well in practice and compares favorably to other gradient-based optimization methods such as SGD and Adam, while can also effectively address the numerical stiffness in training dynamics via gradient descent.
引用
收藏
页码:8692 / 8700
页数:9
相关论文
共 50 条
  • [31] Accelerated Training of Physics-Informed Neural Networks (PINNs) using Meshless Discretizations
    Sharma, Ramansh
    Shankar, Varun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [32] Stochastic physics-informed neural ordinary differential equations
    O'Leary, Jared
    Paulson, Joel A.
    Mesbah, Ali
    Journal of Computational Physics, 2022, 468
  • [33] On Physics-Informed Neural Networks training for coupled hydro-poromechanical problems
    Millevoi, Caterina
    Spiezia, Nicolo
    Ferronato, Massimiliano
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 516
  • [34] About Modifications of the Loss Function for the Causal Training of Physics-Informed Neural Networks
    V. A. Es’kin
    D. V. Davydov
    E. D. Egorova
    A. O. Malkhanov
    M. A. Akhukov
    M. E. Smorkalov
    Doklady Mathematics, 2024, 110 (Suppl 1) : S172 - S192
  • [35] Training physics-informed neural networks: One learning to rule them all?
    Monaco, Simone
    Apiletti, Daniele
    RESULTS IN ENGINEERING, 2023, 18
  • [36] Damped Newton Stochastic Gradient Descent Method for Neural Networks Training
    Zhou, Jingcheng
    Wei, Wei
    Zhang, Ruizhi
    Zheng, Zhiming
    MATHEMATICS, 2021, 9 (13)
  • [37] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [38] Improving the Efficiency of Training Physics-Informed Neural Networks Using Active Learning
    Aikawa, Yuri
    Ueda, Naonori
    Tanaka, Toshiyuki
    NEW GENERATION COMPUTING, 2024, 42 (04) : 739 - 760
  • [39] Structural reliability analysis based on neural networks with physics-informed training samples
    Bai, Zhiwei
    Song, Shufang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [40] Co-training of multiple neural networks for simultaneous optimization and training of physics-informed neural networks for composite curing☆
    Humfeld, Keith D.
    Kim, Geun Young
    Jeon, Ji Ho
    Hoffman, John
    Brown, Allison
    Colton, Jonathan
    Melkote, Shreyes
    Nguyen, Vinh
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2025, 193