Implicit Stochastic Gradient Descent for Training Physics-Informed Neural Networks

被引:0
|
作者
Li, Ye [1 ]
Chen, Song-Can [1 ]
Huang, Sheng-Jun [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol Artificial Intelligence, MIIT, Key Lab Pattern Anal & Machine Intelligence, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems, but they are still trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features. In this paper, we propose to employ implicit stochastic gradient descent (ISGD) method to train PINNs for improving the stability of training process. We heuristically analyze how ISGD overcome stiffness in the gradient flow dynamics of PINNs, especially for problems with multi-scale solutions. We theoretically prove that for two-layer fully connected neural networks with large hidden nodes, randomly initialized ISGD converges to a globally optimal solution for the quadratic loss function. Empirical results demonstrate that ISGD works well in practice and compares favorably to other gradient-based optimization methods such as SGD and Adam, while can also effectively address the numerical stiffness in training dynamics via gradient descent.
引用
收藏
页码:8692 / 8700
页数:9
相关论文
共 50 条
  • [1] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [2] Respecting causality for training physics-informed neural networks
    Wang, Sifan
    Sankaran, Shyam
    Perdikaris, Paris
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [3] Improved Training of Physics-Informed Neural Networks with Model Ensembles
    Haitsiukevich, Katsiaryna
    Ilin, Alexander
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [4] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [5] UNDERSTANDING AND MITIGATING GRADIENT FLOW PATHOLOGIES IN PHYSICS-INFORMED NEURAL NETWORKS
    Wang, Sifan
    Teng, Yujun
    Perdikaris, Paris
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3055 - A3081
  • [6] Quantification of gradient energy coefficients using physics-informed neural networks
    Shang, Lan
    Zhao, Yunhong
    Zheng, Sizheng
    Wang, Jin
    Zhang, Tongyi
    Wang, Jie
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 273
  • [7] Stochastic Memristor Modeling Framework Based on Physics-Informed Neural Networks
    Kim, Kyeongmin
    Lee, Jonghwan
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [8] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [10] Physics-Informed Neural Networks via Stochastic Hamiltonian Dynamics Learning
    Bajaj, Chandrajit
    Minh Nguyen
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2024, 2024, 1066 : 182 - 197