Bisphenol F induces spermatogenic cell ferroptosis via FTO-mediated m6A regulation of FTH1

被引:0
|
作者
Zhou, Shi-meng [1 ,2 ,3 ]
Shi, Yu [1 ,4 ]
Li, Jiang-ying [1 ,4 ]
Wang, Na [1 ,5 ]
Zeng, Yong [1 ]
Chen, Hong-qiang [1 ]
Tan, Yu-pei [1 ,4 ]
Deng, Shuang-wu [1 ,5 ]
Liu, Qing-qing [1 ,6 ]
Huang, Xin-qiao [1 ]
Wang, Yi-qi [1 ]
Zhou, Zi-yuan [1 ]
Liu, Wen-bin [1 ,2 ]
机构
[1] Army Med Univ, Mil Med Univ 3, Coll Prevent Med, Dept Environm Hlth, Chongqing 400038, Peoples R China
[2] Army Med Univ, Mil Med Univ 3, Inst Toxicol, Coll Prevent Med, Chongqing 400038, Peoples R China
[3] Army Med Univ, Mil Med Univ 3, Southwest Hosp, Dept Breast & Thyroid Surg, Chongqing 400038, Peoples R China
[4] Chongqing Univ Technol, Coll Pharm & Bioengn, Chongqing 400054, Peoples R China
[5] Guizhou Med Univ, Sch Publ Hlth, Guiyang 561113, Guizhou, Peoples R China
[6] Army Med Univ, Army Med Ctr PLA, Dept Breast & Thyroid Surg, Chongqing 400042, Peoples R China
基金
中国国家自然科学基金;
关键词
Bisphenol F; Spermatogenic cell; Ferroptosis; FTO; FTH1; ANALOGS;
D O I
10.1016/j.freeradbiomed.2025.01.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bisphenol F (BPF) has become a new risk factor for male semen quality, but its specific mechanism is still unclear. Therefore, this study explored the potential mechanism of BPF affecting male semen quality from the perspective of ferroptosis and m6A RNA methylation. In vivo experiments showed that BPF destroyed the structure of seminiferous tubules, reduced the layers of spermatogenic cells, and reduced semen quality in mice. Moreover, BPF reduced cell viability and induced ferroptosis in GC-2 cells in vitro. Meanwhile, BPF inhibited the expression of fat mass and obesity-associated gene (FTO). Therefore, we constructed differential expression model of FTO and detected key indicators of ferroptosis such as Fe2+, malondialdehyde, and lipid peroxide. The results found that FTO was important in inhibiting BPF-induced ferroptosis in GC-2 cells. Mechanistically, we found that the m6A modification level on ferritin heavy chain 1 (FTH1) mRNA increased after interfering with FTO by MeRIP assay. Moreover, the RIP assay showed that both YTH N6-methyladenosine RNA binding protein F1 (YTHDF1) and YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) could bind FTH1 mRNA to regulate its expression. This study suggests that FTO regulates the expression of FTH1 in YTHDF1 and YTHDF2 dependent manner and mediates ferroptosis in spermatogenic cells, thus alleviating the reproductive damage induced by BPF.
引用
收藏
页码:364 / 373
页数:10
相关论文
共 50 条
  • [41] FTO-mediated m6A modification of BDNF enhances GnRH expression during puberty onset via activating PI3K/AKT signaling
    Zang, Shaolian
    Yin, Xiaoqin
    Li, Pin
    HORMONE RESEARCH IN PAEDIATRICS, 2023, 96 : 452 - 452
  • [42] Butylated hydroxyanisole induces vascular endothelial injury via TFEB-mediated degradation of GPX4 and FTH1
    Zhan, Yufei
    Zhang, Yazhuo
    FOOD AND CHEMICAL TOXICOLOGY, 2024, 188
  • [43] Curdione induces ferroptosis mediated by m6A methylation via METTL14 and YTHDF2 in colorectal cancer
    Wang, Fang
    Sun, Zheng
    Zhang, Qunyao
    Yang, Hao
    Yang, Gang
    Yang, Qi
    Zhu, Yimiao
    Wu, Wenya
    Xu, Wenwen
    Wu, Xiaoyu
    CHINESE MEDICINE, 2023, 18 (01)
  • [44] Curdione induces ferroptosis mediated by m6A methylation via METTL14 and YTHDF2 in colorectal cancer
    Fang Wang
    Zheng Sun
    Qunyao Zhang
    Hao Yang
    Gang Yang
    Qi Yang
    Yimiao Zhu
    Wenya Wu
    Wenwen Xu
    Xiaoyu Wu
    Chinese Medicine, 18
  • [45] LncRNA GAS5 regulated by FTO-mediated m6A demethylation promotes autophagic cell death in NSCLC by targeting UPF1/BRD4 axis
    Yihui Fu
    Lirong Liu
    Haihong Wu
    Yamei Zheng
    Huijuan Zhan
    Liang Li
    Molecular and Cellular Biochemistry, 2024, 479 : 553 - 566
  • [46] LncRNA GAS5 regulated by FTO-mediated m6A demethylation promotes autophagic cell death in NSCLC by targeting UPF1/BRD4 axis
    Fu, Yihui
    Liu, Lirong
    Wu, Haihong
    Zheng, Yamei
    Zhan, Huijuan
    Li, Liang
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2024, 479 (03) : 553 - 566
  • [47] Demethylase FTO-Mediated m6A Modification of lncRNA MEG3 Activates Neuronal Pyroptosis via NLRP3 Signaling in Cerebral Ischemic Stroke
    Honglin Yan
    Wenxian Huang
    Jie Rao
    Dandan Yan
    Jingping Yuan
    Molecular Neurobiology, 2024, 61 : 1023 - 1043
  • [48] Demethylase FTO-Mediated m6A Modification of lncRNA MEG3 Activates Neuronal Pyroptosis via NLRP3 Signaling in Cerebral Ischemic Stroke
    Yan, Honglin
    Huang, Wenxian
    Rao, Jie
    Yan, Dandan
    Yuan, Jingping
    MOLECULAR NEUROBIOLOGY, 2024, 61 (02) : 1023 - 1043
  • [49] FTO-mediated m6A modification promotes malignant transformation of gastric mucosal epithelial cells in chronic Cag A+Helicobacter pylori infection
    Cheng, Sha
    Li, Huan
    Chi, Jingshu
    Zhao, Wenfang
    Lin, Jiahui
    Liu, Xiaoming
    Xu, Canxia
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (10) : 7327 - 7340
  • [50] m6A demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer
    Duan, Xiaoran
    Yang, Li
    Wang, Liuya
    Liu, Qinghua
    Zhang, Kai
    Liu, Shasha
    Liu, Chaojun
    Gao, Qun
    Li, Lifeng
    Qin, Guohui
    Zhang, Yi
    CELL AND BIOSCIENCE, 2022, 12 (01):