Intermittent Drought Priming Improves Photosynthesis, Water Status, Antioxidant Capacity, and Tolerance to Drought Stress in Winter Wheat

被引:0
|
作者
Ru, Chen [1 ]
Liu, Yuxuan [1 ]
Hu, Xiaotao [2 ]
Wang, Wene [2 ]
机构
[1] Anhui Agr Univ, Sch Engn, Hefei 230036, Peoples R China
[2] Northwest A&F Univ, Minist Educ, Key Lab Agr Soil & Water Engn Arid Semiarid Areas, Yangling 712100, Shaanxi, Peoples R China
关键词
Drought priming; Photosynthesis; Antioxidant defense; Plant hormone; Drought tolerance; LIPID-PEROXIDATION; TEMPERATURE STRESS; OXIDATIVE STRESS; PLANT; ACCLIMATION; RESISTANCE; RESPONSES; CHLORIDE; ROOTS; STAGE;
D O I
10.1007/s00344-025-11689-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Improving the drought tolerance of wheat in response to post-flowering stress through appropriate water deficit priming is essential to enhance its production potential. However, the effects of the number of priming events and degree of pre-exposed stress on the physiological traits, growth, and yield of wheat remain unclear. The purpose of this study was to investigate the effects of intermittent and persistent drought priming on photosynthesis, water status, antioxidant capacity, phytohormone content, and yield and to comprehensively evaluate the drought tolerance of wheat. Plants subjected to intermittent moderate drought priming (PID2) and persistent mild drought priming (PPD1) exhibited improved photosynthetic parameters, pigment accumulation, plant-water relations, root activity, and phytohormone synthesis. Under subsequent drought stress, the relative leaf water content of PID2 and PPD1 plants increased by 14% and 10%, respectively, compared with no stress priming (NPD). This phenomenon may be attributed to the higher root hydraulic conductivity and root viability observed in the PID2 plants. When compared with the NPD plants, the levels of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in the PID2 plants increased by 108%, 54%, and 198%, respectively. In addition, the proline content was 116% and 97% higher in PID2 and PPD1 plants, respectively. The reduction in reactive oxygen species and malondialdehyde content further confirmed the alleviation of oxidative stress. Furthermore, the drought tolerance index of PID2 plants was significantly greater than that of NPD plants, resulting in harvest indices and grain yields that were 16.16% and 26.92% higher, respectively, than those of the NPD plants. These findings suggest that implementing intermittent moderate drought priming during the jointing period may serve as a promising strategy for enhancing drought tolerance and increasing wheat yield in arid and semi-arid regions.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Nitrogen Modulates the Effects of Heat, Drought, and Combined Stresses on Photosynthesis, Antioxidant Capacity, Cell Osmoregulation, and Grain Yield in Winter Wheat
    Chen Ru
    Kaifei Wang
    Xiaotao Hu
    Dianyu Chen
    Wene Wang
    Haosheng Yang
    Journal of Plant Growth Regulation, 2023, 42 : 1681 - 1703
  • [32] A new agricultural drought index for monitoring the water stress of winter wheat
    Wu, Dong
    Li, Zhenhong
    Zhu, Yongchao
    Li, Xuan
    Wu, Yingjie
    Fang, Shibo
    AGRICULTURAL WATER MANAGEMENT, 2021, 244
  • [33] Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat
    Xiao Wang
    Marija Vignjevic
    Fulai Liu
    Susanne Jacobsen
    Dong Jiang
    Bernd Wollenweber
    Plant Growth Regulation, 2015, 75 : 677 - 687
  • [34] Melatonin Improves Drought Stress Tolerance of Tomato by Modulating Plant Growth, Root Architecture, Photosynthesis, and Antioxidant Defense System
    Altaf, Muhammad Ahsan
    Shahid, Rabia
    Ren, Ming-Xun
    Naz, Safina
    Altaf, Muhammad Mohsin
    Khan, Latif Ullah
    Tiwari, Rahul Kumar
    Lal, Milan Kumar
    Shahid, Muhammad Adnan
    Kumar, Ravinder
    Nawaz, Muhammad Azher
    Jahan, Mohammad Shah
    Jan, Basit Latief
    Ahmad, Parvaiz
    ANTIOXIDANTS, 2022, 11 (02)
  • [35] Brassinosteroid Priming Improves Peanut Drought Tolerance via Eliminating Inhibition on Genes in Photosynthesis and Hormone Signaling
    Huang, Luping
    Zhang, Lei
    Zeng, Ruier
    Wang, Xinyue
    Zhang, Huajian
    Wang, Leidi
    Liu, Shiyuan
    Wang, Xuewen
    Chen, Tingting
    GENES, 2020, 11 (08) : 1 - 23
  • [36] ABA improvement of antioxidant metabolism under water stress in two wheat cultivars contrasting in drought tolerance
    Kaur L.
    Gupta A.K.
    Zhawar V.K.
    Indian Journal of Plant Physiology, 2014, 19 (2): : 189 - 196
  • [37] Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes
    Sairam, RK
    Shukla, DS
    Saxena, DC
    BIOLOGIA PLANTARUM, 1998, 40 (03) : 357 - 364
  • [38] Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat
    Sairam, RK
    Deshmukh, PS
    Shukla, DS
    JOURNAL OF AGRONOMY AND CROP SCIENCE-ZEITSCHRIFT FUR ACKER UND PFLANZENBAU, 1997, 178 (03): : 171 - 177
  • [39] Effect of water stress on photosynthesis in two mulberry genotypes with different drought tolerance
    Ramanjulu, S
    Sreenivasulu, N
    Sudhakar, C
    PHOTOSYNTHETICA, 1998, 35 (02) : 279 - 283
  • [40] Seed Priming with Ascorbic Acid Improves Drought Resistance of Wheat
    Farooq, M.
    Irfan, M.
    Aziz, T.
    Ahmad, I.
    Cheema, S. A.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2013, 199 (01) : 12 - 22