A CNN-Based Approach for Classical Music Recognition and Style Emotion Classification

被引:0
|
作者
Shi, Yawen [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Art & Design, Luoyang 471000, Henan, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Emotion recognition; Accuracy; Feature extraction; Multiple signal classification; Classification algorithms; Noise; Deep learning; Recommender systems; Proposals; Heuristic algorithms; CNN; deep learning; music recognition; music retrieval; optimization algorithm;
D O I
10.1109/ACCESS.2025.3535411
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Music recognition refers to the process of automatically recognizing and classifying the musical content in audio signals using computer technology and algorithms. Music recognition technology can help people recognize information such as the music title, artist, musical style, rhythm, and the emotions conveyed by the music in the audio, thus enabling applications like automated music information retrieval and recommendation systems. Classical music, due to its vast quantity, diverse types, and time span covering several centuries, presents challenges that existing music recognition software and traditional music recognition algorithms cannot effectively address. In this study, The model based on convolutional neural networks (CNNs) is proposed, allowing people to recognize the classical music title, style, and emotions contained in a piece of music. The proposed model is particularly beneficial for individuals who are interested in classical music but lack extensive knowledge about it, as it provides essential information about the pieces. By extracting multidimensional features from classical music, the model can recognize the title, style, and emotions expressed. To improve the model's recognition accuracy, various noises are introduced to the dataset. Meanwhile, in this study, a novel loss function has been devised to more effectively assess the model's performance. For searching for optimal performance of the model, a novel optimization algorithm also be proposed to find optimal hyperparameters of loss function. The experiment results show average title recognition accuracy is 0.98, average style recognition accuracy is 0.89 and average emotion recognition accuracy is 0.93. These results adequately demonstrate that the proposal model significantly enhances the model's ability to accurately recognize the titles, styles, and emotions of classical music, achieving high recognition rates even in noisy environments.
引用
收藏
页码:20647 / 20666
页数:20
相关论文
共 50 条
  • [31] CNN-based Approach for Enhancing Brain Tumor Image Classification Accuracy
    Muis, A.
    Sunardi, S.
    Yudhana, A.
    International Journal of Engineering, Transactions B: Applications, 2024, 37 (05): : 984 - 996
  • [32] CNN-Based Classification of Optically Critical Cutting Tools with Complex Geometry: New Insights for CNN-Based Classification Tasks
    Bilal, Muehenad
    Podishetti, Ranadheer
    Girish, Tangirala Sri
    Grossmann, Daniel
    Bregulla, Markus
    SENSORS, 2025, 25 (05)
  • [33] pcPromoter-CNN: A CNN-Based Prediction and Classification of Promoters
    Shujaat, Muhammad
    Wahab, Abdul
    Tayara, Hilal
    Chong, Kil To
    GENES, 2020, 11 (12) : 1 - 11
  • [34] Music style classification by jointly using CNN and Transformer
    Tang, Rui
    Qi, Miao
    Wang, Qingnan
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 707 - 712
  • [35] Optimum CNN-Based Plant Mutant Classification
    Goh, Yeh Huann
    Ng, Chee Ho
    Lee, Yoon Ket
    Teoh, Choe Yung
    Goh, Yann Ling
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0679 - 0682
  • [36] CNN-Based Malware Family Classification and Evaluation
    Hebish, Mohamed Wael
    Awni, Mohamed
    2024 14TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEENG 2024, 2024, : 219 - 224
  • [37] CNN-Based Erratic Cigarette Code Recognition
    Xie, Zhi-Feng
    Zhang, Shu-Han
    Wu, Peng
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 245 - 255
  • [38] CNN-based image recognition for topology optimization
    Lee, Seunghye
    Kim, Hyunjoo
    Lieu, Qui X.
    Lee, Jaehong
    KNOWLEDGE-BASED SYSTEMS, 2020, 198
  • [39] CNN-Based Symbol Recognition in Piping Drawings
    Zhang, Yuxi
    Cai, Jiannan
    Cai, Hubo
    CONSTRUCTION RESEARCH CONGRESS 2020: COMPUTER APPLICATIONS, 2020, : 576 - 584
  • [40] CNN-Based Ternary Classification for Image Steganalysis
    Kang, Sanghoon
    Park, Hanhoon
    Park, Jong-Il
    ELECTRONICS, 2019, 8 (11)