Photoacclimation strategies of Chlamydomonas reinhardtii in response to high-light stress in stationary phase

被引:0
|
作者
Devkota, Shilpa [1 ]
Durnford, Dion G. [1 ]
机构
[1] Univ New Brunswick, Dept Biol, 10 Bailey Dr, Fredericton, NB E3B 5A3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Conditional senescence; High-light stress; LHCSR; Nonphotochemical quenching; Photoacclimation; Photoprotection; Stationary phase; PHOTOSYSTEM-II; CONDITIONAL SENESCENCE; PROTEIN LHCSR3; GROWTH; DEPRIVATION; ACCLIMATION; METABOLISM; PHOTOPROTECTION; INHIBITION; EXPRESSION;
D O I
10.1016/j.jphotobiol.2024.113082
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Under ideal conditions, Chlamydomonas reinhardtii can photoacclimate to excess light through various short- and long-term mechanisms. However, how microalgae handle excess light stress once they exit exponential growth, and especially in stationary phase, is less understood. Our study explored C. reinhardtii's photoprotection capacity and acclimation strategies during high-light stress once batch culture growth reached stationary phase. We monitored cultures of wildtype strain (CC125) over five days once they reached stationary phase under both lowlight (LL) and high-light (HL) conditions. Under HL, many photosynthetic proteins were degraded but the stressrelated light harvesting complex protein (LHCSR) was rapidly induced and contributed to the rapid activation of nonphotochemical quenching (NPQ). However, the LHCSR3-defective mutant (CC4614, npq4) lacked the rapid induction of quenching typical of post-exponential cultures, indicating that LHCSR3 is required for this response in stationary phase. Collectively, the main strategy for photoacclimation in stationary phase appears to be a dramatic reduction of photosystems while maintaining LHCII-LHCSR antenna complexes that prime the antenna for rapid activation of quenching upon light exposure. Part of this response to HL involves a resumption of cell growth after two days, that we hypothesized is due to the stimulation of growth-regulating pathways due to increased metabolite pools from the HL-induced protein turnover in the cell, something that remains to be tested. These findings demonstrate how C. reinhardtii manages high-light stress during stationary phases to maximize longevity.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The Role of Copper in the Oxidative Stress Response of Chlamydomonas reinhardtii to heat shock
    Brann, Michelle
    Marcu, Oana
    FASEB JOURNAL, 2015, 29
  • [32] The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii
    Chen, Xiaodong
    Tian, Dagang
    Kong, Xiangxiang
    Chen, Qian
    Abd Allah, E. F.
    Hu, Xiangyang
    Jia, Aiqun
    PLANTA, 2016, 244 (03) : 651 - 669
  • [33] The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii
    Xiaodong Chen
    Dagang Tian
    Xiangxiang Kong
    Qian Chen
    Abd_Allah E.F.
    Xiangyang Hu
    Aiqun Jia
    Planta, 2016, 244 : 651 - 669
  • [34] Oxidative Stress Contributes to Autophagy Induction in Response to Endoplasmic Reticulum Stress in Chlamydomonas reinhardtii
    Perez-Martin, Marta
    Perez-Perez, Maria Esther
    Lemaire, Stephane D.
    Crespo, Jose L.
    PLANT PHYSIOLOGY, 2014, 166 (02) : 997 - U829
  • [35] Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii
    Im, CS
    Grossman, AR
    PLANT JOURNAL, 2002, 30 (03): : 301 - 313
  • [36] The mammalian-type thioredoxin reductase 1 confers a high-light tolerance to the reinhardtii
    Asahina, Yuma
    Sakamoto, Kazuma
    Hisabori, Toru
    Wakabayashi, Ken-ichi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 596 : 97 - 103
  • [37] High-light inducible Lhc-like genes newly identified in Chamydomonas reinhardtii
    Teramoto, H
    Itoh, T
    Ono, T
    PLANT AND CELL PHYSIOLOGY, 2004, 45 : S145 - S145
  • [38] Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress
    Srilatha Nama
    Sai Kiran Madireddi
    Ranay Mohan Yadav
    Rajagopal Subramanyam
    Photosynthesis Research, 2019, 139 : 387 - 400
  • [39] Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress
    Nama, Srilatha
    Madireddi, Sai Kiran
    Yadav, Ranay Mohan
    Subramanyam, Rajagopal
    PHOTOSYNTHESIS RESEARCH, 2019, 139 (1-3) : 387 - 400
  • [40] Nanodiamond Particles Reduce Oxidative Stress Induced by Methyl Viologen and High Light in the Green Alga Chlamydomonas reinhardtii
    Antal, Taras K.
    Volgusheva, Alena A.
    Baizhumanov, Adil A.
    Kukarskikh, Galina P.
    Mezzi, Alessio
    Caschera, Daniela
    Ciasca, Gabriele
    Lambreva, Maya D.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)