Reinforcement Learning With Large Language Models (LLMs) Interaction For Network Services

被引:0
|
作者
Du, Hongyang [1 ]
Zhang, Ruichen [1 ]
Niyato, Dusit [1 ]
Kang, Jiawen [2 ]
Xiong, Zehui [3 ]
Kim, Dong In [4 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] Guangdong Univ Technol, Sch Automat, Guangzhou, Guangdong, Peoples R China
[3] Singapore Univ Technol & Design, Pillar Informat Syst Technol & Design, Singapore, Singapore
[4] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Reinforcement learning; generative artificial intelligence; large language models;
D O I
10.1109/CNC59896.2024.10555960
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial Intelligence-Generated Content (AIGC)-related network services, especially image generation-based services, have garnered notable attention due to their ability to cater to diverse user preferences, which significantly impacts the subjective Quality of Experience (QoE). Specifically, different users can perceive the same semantically informed image quite differently, leading to varying levels of satisfaction. To address this challenge and maximize network users' subjective QoE, we introduce a novel interactive artificial intelligence (IAI) approach using Reinforcement Learning With Large Language Models Interaction (RLLI). RLLI leverages Large Language Model (LLM)-empowered generative agents to simulate user interactions, thereby providing real-time feedback on QoE that encapsulates a range of user personalities. This feedback is instrumental in facilitating the selection of the most suitable AIGC network service provider for each user, ensuring an optimized, personalized experience.
引用
收藏
页码:799 / 803
页数:5
相关论文
共 50 条
  • [21] Harnessing large language models (LLMs) for candidate gene prioritization and selection
    Toufiq, Mohammed
    Rinchai, Darawan
    Bettacchioli, Eleonore
    Kabeer, Basirudeen Syed Ahamed
    Khan, Taushif
    Subba, Bishesh
    White, Olivia
    Yurieva, Marina
    George, Joshy
    Jourde-Chiche, Noemie
    Chiche, Laurent
    Palucka, Karolina
    Chaussabel, Damien
    JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
  • [22] Innovation and application of Large Language Models (LLMs) in dentistry - a scoping review
    Umer, Fahad
    Batool, Itrat
    Naved, Nighat
    BDJ OPEN, 2024, 10 (01)
  • [23] Large Language Models (LLMs) Enable Few-Shot Clustering
    Vijay, Viswanathan
    Kiril, Gashteovski
    Carolin, Lawrence
    Tongshuang, Wu
    Graham, Neubig
    NEC Technical Journal, 2024, 17 (02): : 80 - 90
  • [24] LLMs to the Moon? Reddit Market Sentiment Analysis with Large Language Models
    Deng, Xiang
    Bashlovkina, Vasilisa
    Han, Feng
    Baumgartner, Simon
    Bendersky, Michael
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 1014 - 1019
  • [25] Reducing the Energy Dissipation of Large Language Models (LLMs) with Approximate Memories
    Gao, Zhen
    Deng, Jie
    Reviriego, Pedro
    Liu, Shanshan
    Lombardi, Fabrizio
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [26] Leveraging Large Language Models (LLMs) For Randomized Clinical Trial Summarization
    Mangla, Anjali
    Thangaraj, Phyllis
    Khera, Rohan
    CIRCULATION, 2024, 150
  • [27] Towards trustworthy LLMs: a review on debiasing and dehallucinating in large language models
    Lin, Zichao
    Guan, Shuyan
    Zhang, Wending
    Zhang, Huiyan
    Li, Yugang
    Zhang, Huaping
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (09)
  • [28] A Review of Current Trends, Techniques, and Challenges in Large Language Models (LLMs)
    Patil, Rajvardhan
    Gudivada, Venkat
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [29] Performance of large language models (LLMs) in providing prostate cancer information
    Alasker, Ahmed
    Alsalamah, Seham
    Alshathri, Nada
    Almansour, Nura
    Alsalamah, Faris
    Alghafees, Mohammad
    Alkhamees, Mohammad
    Alsaikhan, Bader
    BMC UROLOGY, 2024, 24 (01):
  • [30] Enhancing Accessibility in Software Engineering Projects with Large Language Models (LLMs)
    Aljedaani, Wajdi
    Eler, Marcelo Medeiros
    Parthasarathy, P. D.
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 1, 2025, : 25 - 31