Impacts of land use change on soil carbon storage and phosphorus fractions in tropics

被引:0
|
作者
Mahmood, Mohsin [1 ]
Ahmed, Waqas [2 ]
Ayyoub, Anam [3 ]
Elrys, Ahmed Salah [4 ,5 ]
Mustafa, Adnan [6 ]
Li, Weidong [2 ]
Xu, Zhuwen [1 ]
机构
[1] Inner Mongolia Univ, Sch Ecol & Environm, Key Lab Ecol & Resource Use Mongolian Plateau, Minist Educ, Hohhot 010021, Peoples R China
[2] Hainan Univ, Key Lab Agroforestry Environm Proc & Ecol Regulat, Haikou 570228, Peoples R China
[3] Northwest A&F Univ, Coll Life Sci, Yangling 712100, Peoples R China
[4] Zagazig Univ, Fac Agr, Soil Sci Dept, Zagazig 44511, Egypt
[5] Justus Liebig Univ, Liebig Ctr Agroecol & Climate Impact Res, Giessen, Germany
[6] Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, Guangzhou 510650, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil depth; Land use systems; Organic carbon; Carbon density; Phosphorus fractions; Soil health; ORGANIC-CARBON; NITROGEN; SEQUESTRATION; WHEAT; WATER; LIMITATION; MANAGEMENT; RESPONSES; MATTER; STOCKS;
D O I
10.1016/j.catena.2024.108550
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Human-induced land use transformations in tropical regions have notably impacted soil nutrient dynamics, particularly of carbon (C) and phosphorus (P). This study investigates soil C stocks and P fractions across six distinct land use types (fallow, residential, woodland, garden plots, cultivated lands, and grasslands) and their influence on soil P distribution at varying soil depths in Hainan Island, China. Higher concentrations of total carbon (TC) and soil organic carbon (SOC) were found in woodland (1.29 %, 1.21 %), garden plot (1.18 %, 1.1 %), and grassland (1.12 %, 1.02 %) soils at the topsoil (0-20 cm), with a noticeable decrease in deep soil layers (20-180 cm) compared to fallow, residential, and cultivated lands. In deeper soil layers (20-100 cm and 100-180 cm), woodland and grassland soils exhibited higher SOC and TC densities (10.09, 15.77 kg m- 2 ; 15.29, 17.03 kg m- 2 , respectively). Using Hedley's modified Tiessen and Moir scheme, P fractionation analysis indicated P limitation in different land use systems. Grassland soils had higher organic P fractions (NaOH-Po, NaHCO3-Po, HClc-Po) at 0-20 cm depth, remaining consistent at deeper layers. In cultivated and grassland soils, the inorganic P fraction (HClD-Pi) was the most significant contributor to total P across all depths. There was a steady trend in residual P across the land use depths. Correlations between labile (NaHCO3-Pi, NaHCO3-Po), moderately (NaOH-Po, NaOH-Pi, HClD-Pi) available P fractions and carbon stocks across all depths further revealed the crucial role of SOC in the regulation of P availability. It can thus be concluded that land use differentially influences SOC and P storage potential in Hainan Island, with divergence in soil layers. These findings highlight the significance of region-specific land management practices for maintaining soil health to mitigate climate change.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Soil carbon fractions influenced by temperature sensitivity and land use management
    Lalitha, M.
    Kumar, Praveen
    AGROFORESTRY SYSTEMS, 2016, 90 (06) : 961 - 964
  • [42] The GEFSOC soil carbon modelling system: A tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon
    Easter, M.
    Paustian, K.
    Killian, K.
    Williams, S.
    Feng, T.
    Al-Adamat, R.
    Batjes, N. H.
    Bernoux, M.
    Bhattacharyya, T.
    Cerri, C. C.
    Cerri, C. E. P.
    Coleman, K.
    Falloon, P.
    Feller, C.
    Gicheru, P.
    Kamoni, P.
    Milne, E.
    Pal, D. K.
    Powlson, D. S.
    Rawajfih, Z.
    Sessay, M.
    Wokabi, S.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2007, 122 (01) : 13 - 25
  • [43] Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain
    Juan Albaladejo
    Roque Ortiz
    Noelia Garcia-Franco
    Antonio Ruiz Navarro
    Maria Almagro
    Javier Garcia Pintado
    Maria Martínez-Mena
    Journal of Soils and Sediments, 2013, 13 : 265 - 277
  • [44] Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain
    Albaladejo, Juan
    Ortiz, Roque
    Garcia-Franco, Noelia
    Ruiz Navarro, Antonio
    Almagro, Maria
    Garcia Pintado, Javier
    Martinez-Mena, Maria
    JOURNAL OF SOILS AND SEDIMENTS, 2013, 13 (02) : 265 - 277
  • [45] Redistribution of Different Organic Carbon Fractions in the Soil Profile of a Typical Chinese Mollisol with Land-Use Change
    Hao, Xiangxiang
    You, Mengyang
    Han, Xiaozeng
    Li, Haibo
    Zou, Wenxiu
    Xing, Baoshan
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2017, 48 (20) : 2369 - 2380
  • [46] Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China
    Zhong, Zekun
    Han, Xinhui
    Xu, Yadong
    Zhang, Wei
    Fu, Shuyue
    Liu, Weichao
    Ren, Chengjie
    Yang, Gaihe
    Ren, Guangxin
    LAND DEGRADATION & DEVELOPMENT, 2019, 30 (09) : 1070 - 1082
  • [47] Variation in soil microbial biomass in the dry tropics: impact of land-use change
    Singh, Mahesh Kumar
    Ghoshal, Nandita
    SOIL RESEARCH, 2014, 52 (03) : 299 - 306
  • [48] Agricultural land use regulates the fate of soil phosphorus fractions following the reclamation of wetlands
    Qin, Lei
    Jiang, Ming
    Freeman, Chris
    Zou, Yuanchun
    Gao, Chuanyu
    Tian, Wei
    Wang, Guodong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 863
  • [49] Impacts of Land Use and Land Cover Change on Soil Erosion and Hydrological Responses in Ethiopia
    Negese, Ajanaw
    APPLIED AND ENVIRONMENTAL SOIL SCIENCE, 2021, 2021
  • [50] Land-use change affects phosphorus fractions in highly weathered tropical soils
    Maranguit, Deejay
    Guillaume, Thomas
    Kuzyakov, Yakov
    CATENA, 2017, 149 : 385 - 393