On Bivariate Self-Exciting Hysteretic Integer-Valued Autoregressive Processes

被引:0
|
作者
Yang, Kai [2 ]
Chen, Xiaoman [2 ]
Li, Han [1 ]
Xia, Chao [2 ]
Wang, Xinyang [3 ]
机构
[1] Changchun Univ, Sch Math & Stat, Changchun 130012, Peoples R China
[2] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Peoples R China
[3] Liaoning Univ, Sch Math & Stat, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Bivariate integer-valued time series; buffered autoregressive process; count data; hysteretic autoregressive process; TGSM algorithm; TIME-SERIES;
D O I
10.1007/s11424-024-4027-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a bivariate hysteretic integer-valued autoregressive (INAR) process driven by a bivariate Poisson innovation. It deals well with the buffered or hysteretic characteristics of the data. Model properties such as sationarity and ergodicity are studied in detail. Parameter estimation problem is also well address via methods of two-step conditional least squares (CLS) and conditional maximum likelihood (CML). The boundary parameters are estimated via triangular grid searching algorithm. The estimation effect is verified through simulations based on three scenarios. Finally, the new model is applied to the offence counts in New South Wales (NSW), Australia.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Self-exciting threshold binomial autoregressive processes
    Moeller, Tobias A.
    Silva, Maria Eduarda
    Weiss, Christian H.
    Scotto, Manuel G.
    Pereira, Isabel
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2016, 100 (04) : 369 - 400
  • [22] Limit theorems for bifurcating integer-valued autoregressive processes
    Bercu B.
    Blandin V.
    Statistical Inference for Stochastic Processes, 2015, 18 (1) : 33 - 67
  • [23] A copula-based bivariate integer-valued autoregressive process with application
    Buteikis, Andrius
    Leipus, Remigijus
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2019, 6 (02): : 227 - 249
  • [24] A bivariate first-order signed integer-valued autoregressive process
    Bulla, Jan
    Chesneau, Christophe
    Kachour, Maher
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (13) : 6590 - 6604
  • [25] Self-exciting threshold -valued autoregressive processes for non-stationary time series of counts
    Li, Han
    Chen, Xiaoman
    Dong, Xiaogang
    STATISTICS, 2024, 58 (02) : 316 - 335
  • [26] Multivariate threshold integer-valued autoregressive processes with explanatory variables
    Yang, Kai
    Xu, Nuo
    Li, Han
    Zhao, Yiwei
    Dong, Xiaogang
    APPLIED MATHEMATICAL MODELLING, 2023, 124 : 142 - 166
  • [27] A Goodness-of-Fit Test for Integer-Valued Autoregressive Processes
    Schweer, Sebastian
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (01) : 77 - 98
  • [28] Generalized Poisson integer-valued autoregressive processes with structural changes
    Zhang, Chenhui
    Wang, Dehui
    Yang, Kai
    Li, Han
    Wang, Xiaohong
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (11) : 2717 - 2739
  • [29] Bivariate Random Coefficient Integer-Valued Autoregressive Model Based on a ρ-Thinning Operator
    Liu, Chang
    Wang, Dehui
    AXIOMS, 2024, 13 (06)
  • [30] INTEGER-VALUED SELF-SIMILAR PROCESSES
    STEUTEL, FW
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 17 (01) : 27 - 28