Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy With Sparse Point Annotation

被引:0
|
作者
Qiu, Dafei [1 ]
Xiong, Shan [1 ]
Yi, Jiajin [1 ]
Peng, Jialin [1 ]
机构
[1] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Annotations; Image segmentation; Task analysis; Training; Adaptation models; Electrons; Predictive models; Sparse point annotation; weakly-supervised domain adaptation; electron microscopy; mitochondria segmentation; MITOCHONDRIA SEGMENTATION; IMAGE SEGMENTATION; EM IMAGES;
D O I
10.1109/TBDATA.2024.3378062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate segmentation of organelle instances from electron microscopy (EM) images plays an essential role in many neuroscience researches. However, practical scenarios usually suffer from high annotation costs, label scarcity, and large domain diversity. While unsupervised domain adaptation (UDA) that assumes no annotation effort on the target data is promising to alleviate these challenges, its performance on complicated segmentation tasks is still far from practical usage. To address these issues, we investigate a highly annotation-efficient weak supervision, which assumes only sparse center-points on a small subset of object instances in the target training images. To achieve accurate segmentation with partial point annotations, we introduce instance counting and center detection as auxiliary tasks and design a multitask learning framework to leverage correlations among the counting, detection, and segmentation, which are all tasks with partial or no supervision. Building upon the different domain-invariances of the three tasks, we enforce counting estimation with a novel soft consistency loss as a global prior for center detection, which further guides the per-pixel segmentation. To further compensate for annotation sparsity, we develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection. The experimental results highlight that, by simply using extremely weak annotation, e.g., 15% sparse points, for model training, the proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart. The high robustness of our model shown in the validations and the low requirement of expert knowledge for sparse point annotation further improve the potential application value of our model.
引用
收藏
页码:359 / 371
页数:13
相关论文
共 50 条
  • [41] Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Wei, Xiaolin
    Ma, Lin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [42] Weakly-Supervised Semantic Segmentation Using Motion Cues
    Tokmakov, Pavel
    Alahari, Karteek
    Schmid, Cordelia
    COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 388 - 404
  • [43] HYPERGRAPH CONVOLUTIONAL NETWORKS FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Giraldo, Jhony H.
    Scarrica, Vincenzo
    Staiano, Antonino
    Camastra, Francesco
    Bouwmans, Thierry
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 16 - 20
  • [44] Weakly-Supervised Ultrasound Video Segmentation with Minimal Annotations
    Chang, Ruiheng
    Wang, Dong
    Guo, Haiyan
    Ding, Jia
    Wang, Liwei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VIII, 2021, 12908 : 648 - 658
  • [45] Weakly-Supervised Medical Image Segmentation with Gaze Annotations
    Zhong, Yuan
    Tang, Chenhui
    Yang, Yumeng
    Qi, Ruoxi
    Zhou, Kang
    Gong, Yuqi
    Heng, Pheng Ann
    Hsiao, Janet H.
    Dou, Qi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT III, 2024, 15003 : 530 - 540
  • [46] Weakly-Supervised Semantic Segmentation Network With Iterative dCRF
    Li, Yujie
    Sun, Jiaxing
    Li, Yun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25419 - 25426
  • [47] Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning
    Wang, Xiang
    Liu, Sifei
    Ma, Huimin
    Yang, Ming-Hsuan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (06) : 1736 - 1749
  • [48] Point2Mask: A Weakly Supervised Approach for Cell Segmentation Using Point Annotation
    Khalid, Nabeel
    Schmeisser, Fabian
    Koochali, Mohammadmahdi
    Munir, Mohsin
    Edlund, Christoffer
    Jackson, Timothy R.
    Trygg, Johan
    Sjogren, Rickard
    Dengel, Andreas
    Ahmed, Sheraz
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 : 139 - 153
  • [49] Weakly-Supervised Semantic Segmentation of ALS Point Clouds Based on Auxiliary Line and Plane Point Prediction
    Chen, Jintao
    Zhang, Yan
    Ma, Feifan
    Huang, Kun
    Tan, Zhuangbin
    Qi, Yuanjie
    Li, Jing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18096 - 18111
  • [50] Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning
    Xiang Wang
    Sifei Liu
    Huimin Ma
    Ming-Hsuan Yang
    International Journal of Computer Vision, 2020, 128 : 1736 - 1749