Optimization and prediction of machining parameters in nanoparticle-reinforced FMLs using AI techniques

被引:0
|
作者
Mani, Narasimharajan [1 ]
Subbiah, Dinesh [2 ]
Moorthy, Arul [3 ]
Arunagiri, Adinarayanan [4 ]
机构
[1] Mahendra Inst Technol, Dept Mech Engn, Namakkal 637503, Tamilnadu, India
[2] Dhanalakshmi Coll Engn, Dept Mech Engn, Chennai 601301, Tamilnadu, India
[3] ARM Coll Engn & Technol, Dept Mech Engn, Chennai 603209, Tamilnadu, India
[4] AMET Univ, Dept Mech Engn, Chennai 603112, Tamil Nadu, India
来源
MATERIA-RIO DE JANEIRO | 2025年 / 30卷
关键词
BaSO4; Nanoparticles; Fiber Metal Laminates; Drilling Optimization; Deep Learning Prediction;
D O I
10.1590/1517-7076-RMAT-2024-0645
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study focuses on optimizing and predicting the drilling performance of Fiber Metal Laminates (FMLs) reinforced with BaSO4 nanoparticles, achieved by adjusting parameters like spindle speed, feed rate, and tool diameter. Key responses-thrust force, torque, delamination, and surface roughness-were evaluated to enhance machinability. Using Central Composite Design, optimal parameters were identified: a spindle speed of 3000 rpm, feed rate of 10 mm/min, and tool diameter of 6 mm. Under these conditions, thrust force decreased by 51.92%, surface roughness improved to Ra = 2.3 mu m, and delamination reduced by 21%. A two-layer feed- forward neural network in MATLAB 2023a accurately predicted outcomes with a Mean Square Error (MSE) of 1.4025e-05, demonstrating high correlation with experimental data. The inclusion of BaSO4 nanoparticles significantly improved the FMLs' mechanical and thermal properties, enhancing machinability. This integrated approach of experimental optimization and predictive modeling provides a strong framework for precision machining of hybrid composites. The findings are especially promising for aerospace and automotive industries, where defect-free, high-quality FML machining is essential, positioning this method as a key advancement in nanoparticle-reinforced composite drilling.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] OPTIMIZATION OF WEDM PARAMETERS ON MACHINING OF AI7075 BASED HYBRID MMCs
    Satishkumar, D.
    Kanthababu, M.
    Saravanan, R.
    Moorthy, T.
    Saravanan, P.
    Srinivasan, G.
    ADVANCED COMPOSITES LETTERS, 2012, 21 (04) : 100 - 106
  • [22] Optimization of Machining parameters in wet and cryogenic Machining using TOPSIS approach
    Kanagaraju, T.
    Gowthaman, B.
    Arunkumar, A.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 1157 - 1162
  • [23] Optimization of process parameters on machining of graphene reinforced with magnesium based composite using abrasive jet machine
    Satish Kumar N.
    Sozhamannan G.G.
    Materials Today: Proceedings, 2022, 68 : 2152 - 2158
  • [24] Optimization of machining parameters values during milling on carbon fiber reinforced plastic (CFRP) using RSM
    Ramli, Siti Fatirah
    Khairussaleh, Nor Khairusshima Muhamad
    Mokhtar, Suhaily
    Dahnel, Aishah Najiah
    Raof, Natasha A.
    JURNAL TRIBOLOGI, 2022, 34 : 24 - 38
  • [25] Routability Prediction and Optimization Using Explainable AI
    Park, Seonghyeon
    Kim, Daeyeon
    Kwon, Seongbin
    Kang, Seokhyeong
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2023,
  • [26] Experimental investigation and optimization of machining parameters during machining of glass fibre reinforced epoxy based composite using desirability function analysis
    Senthilkumar, K. M.
    Kathiravan, N.
    Girisha, L.
    Sivaperumal, M.
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2022, 23 (04): : 541 - 545
  • [27] Optimization of modern machining processes using advanced optimization techniques: A review
    Rao, R.V. (ravipudirao@rediffmail.com), 1600, Springer London (73): : 5 - 8
  • [28] Optimization of modern machining processes using advanced optimization techniques: a review
    Rao, R. Venkata
    Kalyankar, V. D.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 73 (5-8): : 1159 - 1188
  • [29] Optimization of modern machining processes using advanced optimization techniques: a review
    R. Venkata Rao
    V. D. Kalyankar
    The International Journal of Advanced Manufacturing Technology, 2014, 73 : 1159 - 1188
  • [30] Parameters Optimization for Sustainable Machining by using Taguchi Method
    Singh, Karmjit
    Sultan, Ibrahim
    MATERIALS TODAY-PROCEEDINGS, 2019, 18 : 4217 - 4226