Optimization and prediction of machining parameters in nanoparticle-reinforced FMLs using AI techniques

被引:0
|
作者
Mani, Narasimharajan [1 ]
Subbiah, Dinesh [2 ]
Moorthy, Arul [3 ]
Arunagiri, Adinarayanan [4 ]
机构
[1] Mahendra Inst Technol, Dept Mech Engn, Namakkal 637503, Tamilnadu, India
[2] Dhanalakshmi Coll Engn, Dept Mech Engn, Chennai 601301, Tamilnadu, India
[3] ARM Coll Engn & Technol, Dept Mech Engn, Chennai 603209, Tamilnadu, India
[4] AMET Univ, Dept Mech Engn, Chennai 603112, Tamil Nadu, India
来源
MATERIA-RIO DE JANEIRO | 2025年 / 30卷
关键词
BaSO4; Nanoparticles; Fiber Metal Laminates; Drilling Optimization; Deep Learning Prediction;
D O I
10.1590/1517-7076-RMAT-2024-0645
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study focuses on optimizing and predicting the drilling performance of Fiber Metal Laminates (FMLs) reinforced with BaSO4 nanoparticles, achieved by adjusting parameters like spindle speed, feed rate, and tool diameter. Key responses-thrust force, torque, delamination, and surface roughness-were evaluated to enhance machinability. Using Central Composite Design, optimal parameters were identified: a spindle speed of 3000 rpm, feed rate of 10 mm/min, and tool diameter of 6 mm. Under these conditions, thrust force decreased by 51.92%, surface roughness improved to Ra = 2.3 mu m, and delamination reduced by 21%. A two-layer feed- forward neural network in MATLAB 2023a accurately predicted outcomes with a Mean Square Error (MSE) of 1.4025e-05, demonstrating high correlation with experimental data. The inclusion of BaSO4 nanoparticles significantly improved the FMLs' mechanical and thermal properties, enhancing machinability. This integrated approach of experimental optimization and predictive modeling provides a strong framework for precision machining of hybrid composites. The findings are especially promising for aerospace and automotive industries, where defect-free, high-quality FML machining is essential, positioning this method as a key advancement in nanoparticle-reinforced composite drilling.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Artificial Intelligence Optimization of Turning Parameters of Nanoparticle-Reinforced P/M Alloy Tool
    Muniappan, A.
    Jayaraja, B. Gnanasundara
    Vignesh, T.
    Singh, Mandeep
    Arunkumar, T.
    Sekar, S.
    Priyadharshini, T. R.
    Pant, Bhaskar
    Paramasivam, Prabhu
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [2] Optimization of machining parameters using artificial Intelligence techniques
    Muthuram, N.
    Frank, F. Christo
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 8097 - 8102
  • [3] Formulation optimization of unreinforced and lignin nanoparticle-reinforced phenolic foams using an analysis of variance approach
    Del Saz-Orozco, B.
    Oliet, M.
    Alonso, M. V.
    Rojo, E.
    Rodriguez, F.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (06) : 667 - 674
  • [4] Optimization of machining parameters of GFRP pipes using evolutionary techniques
    Sait, Abdullah Naveen
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2010, 11 (06) : 891 - 900
  • [5] Optimization of machining parameters of GFRP pipes using evolutionary techniques
    Abdullah Naveen Sait
    International Journal of Precision Engineering and Manufacturing, 2010, 11 : 891 - 900
  • [6] Optimization of Electrodischarge Machining Parameters Using Non-traditional Optimization Techniques
    Agarwal, Kaushik
    Joshi, Shishir
    Asudani, Divyansh
    Savani, Dixit
    Patel, Deep
    Prajapati, Ashish R.
    Desai, Keyur P.
    Dave, Harshit K.
    Lecture Notes in Mechanical Engineering, 2022, : 329 - 340
  • [7] Precipitate Analysis of Nanoparticle-Reinforced Tin Bronze Using Atom Probe Tomography
    Chen, Kai-Xuan
    Niu, Ya-Wei
    Ding, Ding
    Wang, Zi-Dong
    Chen, Xiao-Hua
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE AND ENERGY ENGINEERING (CMSEE 2014), 2015, : 357 - 364
  • [8] Prediction and optimization of machining results and parameters in drilling by using Bayesian networks
    X. Wang
    R. Eisseler
    H.-C. Moehring
    Production Engineering, 2020, 14 : 373 - 383
  • [9] Prediction and optimization of machining results and parameters in drilling by using Bayesian networks
    Wang, X.
    Eisseler, R.
    Moehring, H-C
    PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT, 2020, 14 (03): : 373 - 383
  • [10] Prediction of the Effective Elastic Moduli of the Nanoparticle-reinforced Polymer Matrix Composites Considering Interface Effects
    Xu, Jia-chu
    Zhang, Zong-fu
    Lin, Jie
    ADVANCED MATERIALS AND ITS APPLICATION, 2012, 460 : 107 - +