Electrocatalyst design strategies towards high performance anion-exchange membrane-based direct ammonia fuel cells

被引:0
|
作者
Kim, Ho Young [1 ]
Kim, Jungki [2 ,3 ]
Lee, Eunsoo [4 ,5 ]
Choi, Hyoryeong [4 ,5 ]
Chun, Hyunsoo [6 ]
Kundu, Joyjit [2 ,3 ]
Choi, Sang-Il [2 ,3 ]
Lee, Kwangyeol [4 ,5 ]
Kim, Jin Young [7 ,8 ]
机构
[1] Sangmyung Univ, Dept Chem & Energy Engn, Seoul 03016, South Korea
[2] Kyungpook Natl Univ, Dept Chem, Daegu 41566, South Korea
[3] Kyungpook Natl Univ, Green Nano Mat Res Ctr, Daegu 41566, South Korea
[4] Korea Univ, Dept Chem, Seoul 02841, South Korea
[5] Korea Univ, Res Inst Nat Sci, Seoul 02841, South Korea
[6] Seoul Natl Univ, Dept Mech Engn, Seoul 08826, South Korea
[7] Korea Inst Sci & Technol KIST, Hydrogen Fuel Cell Res Ctr, Seoul 02792, South Korea
[8] Korea Natl Univ Sci & Technol UST, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
OXYGEN REDUCTION REACTION; ELECTROCHEMICAL OXIDATION; PLATINUM NANOPARTICLES; METAL NANOPARTICLES; HYDROGEN OXIDATION; CATALYTIC-ACTIVITY; ALCOHOL OXIDATION; ANODIC-OXIDATION; ALKALINE MEDIA; PT/C CATALYSTS;
D O I
10.1039/d4ta07723g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct ammonia fuel cells (DAFCs) with anion-exchange membranes (AEMs) are considered a valuable contributor to a carbon-neutral clean energy society, benefitting from the existence of long-established ammonia infrastructure. However, the relatively low cell performance of DAFCs compared to the hydrogen-based fuel cells and the critical issues related to catalyst poisoning limit the widespread use of DAFCs and have spurred multi-directional efforts to develop tailored catalyst compositions and structures specific to DAFCs. In this review, we outline recent progress in the development of electrocatalysts for DAFCs. First, we summarize the operating principles of DAFCs and address critical challenges in electrode reactions, the ammonia oxidation reaction (AOR) and oxygen reduction reaction (ORR). Subsequently, we present an overview of recent endeavours to enhance activity, selectivity, and durability of catalysts for each electrode reaction. We categorize the electrocatalytic exemplars into platinum group metal (PGM) and non-PGM compositions and provide systematic comparisons of each strategy to provide a more comprehensive understanding of catalyst design. Lastly, this review highlights remaining challenges and offers insights into future directions for optimizing DAFC performance.
引用
收藏
页码:6176 / 6204
页数:29
相关论文
共 50 条
  • [31] Effect of cathode micro-porous layer on performance of anion-exchange membrane direct ethanol fuel cells
    Li, Y. S.
    Zhao, T. S.
    Xu, J. B.
    Shen, S. Y.
    Yang, W. W.
    JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1802 - 1807
  • [32] Influence of Nafion loading in the anode catalyst layer on the performance of anion-exchange membrane direct formate fuel cells
    Shyu, Jin-Cherng
    Wang, Yun-Lin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (04) : 5165 - 5176
  • [33] Electrocatalyst and electrode design strategies for durable proton exchange membrane fuel cells
    Xiao, Fei
    Shao, Minhua
    MATTER, 2024, 7 (02) : 351 - 377
  • [34] Ionothermal synthesis of mesoporous FeNC electrocatalysts for high-performance anion-exchange membrane fuel cells
    Ibrahim, Faruq Olamilekan
    Kisand, Kaarel
    Douglin, John C.
    Sarapuu, Ave
    Kikas, Arvo
    Kaarik, Maike
    Kozlova, Jekaterina
    Aruvali, Jaan
    Treshchalov, Alexey
    Leis, Jaan
    Kisand, Vambola
    Kukli, Kaupo
    Yassin, Karam
    Dekel, Dario R.
    Tammeveski, Kaido
    CHEMICAL ENGINEERING JOURNAL, 2025, 510
  • [35] Temperature-controlled shape transformation of PtCo alloy catalysts for enhanced ammonia oxidation in anion-exchange membrane direct ammonia fuel cells
    Hong, Chan-Eui
    Park, Deok-Hye
    Gu, Yoonhi
    Park, Seon-Ha
    Lim, Da-Mi
    Seo, Dong-Geon
    Han, Jae-Ik
    Park, Kyung-Won
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 87 : 1367 - 1376
  • [36] Study of Anode Catalysts and Fuel Concentration on Direct Hydrazine Alkaline Anion-Exchange Membrane Fuel Cells
    Asazawa, Koichiro
    Sakamoto, Tomokazu
    Yamaguchi, Susumu
    Yamada, Koji
    Fujikawa, Hirotoshi
    Tanaka, Hirohisa
    Oguro, Keisuke
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (04) : B509 - B512
  • [37] The impact of graphene-based materials on anion-exchange membrane fuel cells
    Raut, Aniket
    Fang, Haoyan
    Lin, Yu-Chung
    Fu, Shi
    Rahman, Md Farabi
    Sprouster, David
    Wang, Likun
    Fang, Yiwei
    Yin, Yifan
    Bhardwaj, Devanshi
    Isseroff, Rebecca
    Li, Tai-De
    Cuiffo, Michael
    Douglin, John C.
    Lilloja, Jaana
    Tammeveski, Kaido
    Dekel, Dario R.
    Rafailovich, Miriam
    CARBON TRENDS, 2025, 19
  • [38] Migration and Precipitation of Platinum in Anion-Exchange Membrane Fuel Cells
    Raut, Aniket
    Fang, Haoyan
    Lin, Yu-Chung
    Fu, Shi
    Sprouster, David
    Shimogawa, Ryuichi
    Frenkel, Anatoly I.
    Bae, Chulsung
    Douglin, John C.
    Lillojad, Jaana
    Tammeveski, Kaido
    Zeng, Zhiqiao
    Bliznakov, Stoyan
    Rafailovich, Miriam
    Dekel, Dario R.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (37)
  • [39] A high-temperature anion-exchange membrane fuel cell
    Douglin, John C.
    Varcoe, John R.
    Dekel, Dario R.
    JOURNAL OF POWER SOURCES ADVANCES, 2020, 5
  • [40] Performance of PdRu/C anode catalyst for anion-exchange membrane direct ethanol fuel cell
    Ma, Liang
    Hsu, Andrew
    Chen, Rongrong
    POLYMER ELECTROLYTE FUEL CELLS 13 (PEFC 13), 2013, 58 (01): : 1321 - 1326