VideoCutLER: Surprisingly Simple Unsupervised Video Instance Segmentation

被引:1
|
作者
Wang, Xudong [1 ]
Misra, Ishan
Zeng, Ziyun
Girdhar, Rohit
Darrell, Trevor
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
D O I
10.1109/CVPR52733.2024.02147
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing approaches to unsupervised video instance segmentation typically rely on motion estimates and experience difficulties tracking small or divergent motions. We present VideoCutLER, a simple method for unsupervised multi-instance video segmentation without using motion-based learning signals like optical flow or training on natural videos. Our key insight is that using high-quality pseudo masks and a simple video synthesis method for model training is surprisingly sufficient to enable the resulting video model to effectively segment and track multiple instances across video frames. We show the first competitive unsupervised learning results on the challenging YouTubeVIS-2019 benchmark, achieving 50.7% AP(50)(video), surpassing the previous state-of-the-art by a large margin. VideoCutLER can also serve as a strong pretrained model for supervised video instance segmentation tasks, exceeding DINO by 15.9% on YouTubeVIS-2019 in terms of AP(video).
引用
收藏
页码:22755 / 22764
页数:10
相关论文
共 50 条
  • [31] DVIS: Decoupled Video Instance Segmentation Framework
    Zhang, Tao
    Tian, Xingye
    Wu, Yu
    Ji, Shunping
    Wang, Xuebo
    Zhang, Yuan
    Wan, Pengfei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1282 - 1291
  • [32] Instance Segmentation with Unsupervised Adaptation to Different Domains for Autonomous Vehicles
    Diaz-Zapata, Manuel
    Erkent, Ozgur
    Laugier, Christian
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 421 - 427
  • [33] Exemplar-FreeSOLO: Enhancing Unsupervised Instance Segmentation with Exemplars
    Ishtiak, Taoseef
    En, Qing
    Guo, Yuhong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15424 - 15433
  • [34] HUNIS: High-Performance Unsupervised Nuclei Instance Segmentation
    Magoulianitis, Vasileios
    Yang, Yijing
    Kuo, C-C Jay
    2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [35] Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised Semantic Segmentation and Localization
    Melas-Kyriazi, Luke
    Rupprecht, Christian
    Laina, Iro
    Vedaldi, Andrea
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8354 - 8365
  • [36] Hybrid Instance-Aware Temporal Fusion for Online Video Instance Segmentation
    Li, Xiang
    Wang, Jinglu
    Li, Xiao
    Lu, Yan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1429 - 1437
  • [37] Video Mask Transfiner for High-Quality Video Instance Segmentation
    Ke, Lei
    Ding, Henghui
    Danelljan, Martin
    Tai, Yu-Wing
    Tang, Chi-Keung
    Yu, Fisher
    COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 731 - 747
  • [38] TCOVIS: Temporally Consistent Online Video Instance Segmentation
    Li, Junlong
    Yu, Bingyao
    Rao, Yongming
    Zhou, Jie
    Lu, Jiwen
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1097 - 1107
  • [39] TIVE: A toolbox for identifying video instance segmentation errors
    Jia, Wenhe
    Yang, Lu
    Jia, Zilong
    Zhao, Wenyi
    Zhou, Yilin
    Song, Qing
    NEUROCOMPUTING, 2023, 545
  • [40] Video Instance Segmentation Using Graph Matching Transformer
    Qin, Zheyun
    Lu, Xiankai
    Nie, Xiushan
    Yin, Yilong
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 995 - 1004