VideoCutLER: Surprisingly Simple Unsupervised Video Instance Segmentation

被引:1
|
作者
Wang, Xudong [1 ]
Misra, Ishan
Zeng, Ziyun
Girdhar, Rohit
Darrell, Trevor
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
D O I
10.1109/CVPR52733.2024.02147
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing approaches to unsupervised video instance segmentation typically rely on motion estimates and experience difficulties tracking small or divergent motions. We present VideoCutLER, a simple method for unsupervised multi-instance video segmentation without using motion-based learning signals like optical flow or training on natural videos. Our key insight is that using high-quality pseudo masks and a simple video synthesis method for model training is surprisingly sufficient to enable the resulting video model to effectively segment and track multiple instances across video frames. We show the first competitive unsupervised learning results on the challenging YouTubeVIS-2019 benchmark, achieving 50.7% AP(50)(video), surpassing the previous state-of-the-art by a large margin. VideoCutLER can also serve as a strong pretrained model for supervised video instance segmentation tasks, exceeding DINO by 15.9% on YouTubeVIS-2019 in terms of AP(video).
引用
收藏
页码:22755 / 22764
页数:10
相关论文
共 50 条
  • [1] Instance Embedding Transfer to Unsupervised Video Object Segmentation
    Li, Siyang
    Seybold, Bryan
    Vorobyov, Alexey
    Fathi, Alireza
    Huang, Qin
    Kuo, C. -C. Jay
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6526 - 6535
  • [2] Video Instance Segmentation
    Yang, Linjie
    Fan, Yuchen
    Xu, Ning
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5187 - 5196
  • [3] A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation
    Ponimatkin, Georgy
    Samet, Nermin
    Xiao, Yang
    Du, Yuming
    Marlet, Renaud
    Lepetit, Vincent
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5881 - 5892
  • [4] Adapting Video Instance Segmentation for Instance Search
    Nguyen, An Thi
    20TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI 2023, 2023, : 256 - 260
  • [5] Video Instance Segmentation by Instance Flow Assembly
    Li, Xiang
    Wang, Jinglu
    Li, Xiao
    Lu, Yan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7469 - 7479
  • [6] Instance Sequence Queries for Video Instance Segmentation with Transformers
    Xu, Zhujun
    Vivet, Damien
    SENSORS, 2021, 21 (13)
  • [7] MobileInst: Video Instance Segmentation on the Mobile
    Zhang, Renhong
    Cheng, Tianheng
    Yang, Shusheng
    Jiang, Haoyi
    Zhang, Shuai
    Lyu, Jiancheng
    Li, Xin
    Ying, Xiaowen
    Gao, Dashan
    Liu, Wenyu
    Wang, Xinggang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 7260 - 7268
  • [8] Occluded Video Instance Segmentation: A Benchmark
    Qi, Jiyang
    Gao, Yan
    Hu, Yao
    Wang, Xinggang
    Liu, Xiaoyu
    Bai, Xiang
    Belongie, Serge
    Yuille, Alan
    Torr, Philip H. S.
    Bai, Song
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (08) : 2022 - 2039
  • [9] Occluded Video Instance Segmentation: A Benchmark
    Jiyang Qi
    Yan Gao
    Yao Hu
    Xinggang Wang
    Xiaoyu Liu
    Xiang Bai
    Serge Belongie
    Alan Yuille
    Philip H. S. Torr
    Song Bai
    International Journal of Computer Vision, 2022, 130 : 2022 - 2039
  • [10] A Generalized Framework for Video Instance Segmentation
    Heo, Miran
    Hwang, Sukjun
    Hyun, Jeongseok
    Kim, Hanjung
    Oh, Seoung Wug
    Lee, Joon-Young
    Kim, Seon Joo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14623 - 14632