Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane

被引:0
|
作者
Turley, W. D. [1 ]
La Lone, B. M. [1 ]
Mance, J. G. [1 ]
Staska, M. D. [1 ]
Stevens, G. D. [1 ]
Veeser, L. R. [2 ]
Aslam, T. D. [3 ]
Dattelbaum, D. M. [3 ]
机构
[1] Nevada Natl Secur Sites, Special Technol Lab, Santa Barbara, CA 93111 USA
[2] Nevada Natl Secur Sites, Los Alamos Operat, Los Alamos, NM 87544 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
EQUATION-OF-STATE; TEMPERATURE;
D O I
10.1063/5.0241114
中图分类号
O59 [应用物理学];
学科分类号
摘要
We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble, creating a localized hot spot. We measured shock and detonation wave speeds with optical velocimetry, and we used a high-speed camera to image the shock propagation and bubble collapse processes. A multiband optical fiber pyrometer measured the time-resolved thermal radiance, and we used the results and emissivity values extracted from spectral fits to estimate temperatures. We measured the characteristics of the shock-to-detonation transition in NM with and without a bubble. All experiments were performed at shock pressures near 8 GPa, where neat NM can detonate. A single bubble in this system was shown to sensitize NM, leading to a reduced run-to-detonation time. We used hydrodynamic modeling to predict shock wave propagation, the extent of chemical reaction, and subsequent temperature rise from the collapsing bubble. We used a temperature-dependent Arrhenius burn model for simulations, and it yielded much better results than reactive burn models that depend only on pressure and density.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Detonation Initiation upon Interaction of a Shock Wave with a Combustible Gas Bubble
    P. Yu. Georgievskiy
    O. G. Sutyrin
    Doklady Physics, 2022, 67 : 74 - 79
  • [32] Detonation Initiation upon Interaction of a Shock Wave with a Combustible Gas Bubble
    Georgievskiy, P. Yu.
    Sutyrin, O. G.
    DOKLADY PHYSICS, 2022, 67 (03) : 74 - 79
  • [33] Gas Bubble Shape and Shock Wave Propagation Process of Underwater Detonation
    Hou Z.-W.
    Weng C.-S.
    Jia F.
    Huang X.-L.
    Wang C.-W.
    Tuijin Jishu/Journal of Propulsion Technology, 2021, 42 (04): : 755 - 764
  • [34] Shock wave in a gas–liquid bubble medium
    E. E. Son
    A. V. Dyrenkov
    O. Kyung
    K. E. Son
    V. Yu. Velikodny
    High Temperature, 2015, 53 : 882 - 886
  • [35] Ignition limit and shock-to-detonation transition mode of n -heptane/air mixture in high-speed wedge flows
    Guo, Hongbo
    Xu, Yong
    Zheng, Hongtao
    Zhang, Huangwei
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (04) : 4771 - 4780
  • [36] Determining reaction rate parameters for an energetic material through inverse multi-scale analysis of shock-to-detonation transition
    Parepalli, P.
    Hardin, D. B.
    Molek, C. D.
    Welle, E. J.
    Udaykumar, H. S.
    JOURNAL OF ENERGETIC MATERIALS, 2024,
  • [37] Experimental and numerical study of shock-to-detonation transition in tri-amino-tri-nitro-benzene explosive with temperature effects
    Yang, Shuqi
    Peng, Wenyang
    Shu, Junxiang
    Zhang, Qimin
    Chen, Lang
    Zhang, Xu
    JOURNAL OF ENERGETIC MATERIALS, 2024, 42 (05) : 791 - 815
  • [38] Detonation of a Combustible Gas Mixture upon the Interaction of a Shock Wave with an Ellipsoidal Inert Gas Bubble
    P. Yu. Georgievskiy
    O. G. Sutyrin
    Doklady Physics, 2023, 68 : 164 - 170
  • [39] Detonation of a Combustible Gas Mixture upon the Interaction of a Shock Wave with an Ellipsoidal Inert Gas Bubble
    Georgievskiy, P. Yu.
    Sutyrin, O. G.
    DOKLADY PHYSICS, 2023, 68 (05) : 164 - 170
  • [40] Shock wave in a gas-liquid bubble medium
    Son, E. E.
    Dyrenkov, A. V.
    Kyung, O.
    Son, K. E.
    Velikodny, V. Yu.
    HIGH TEMPERATURE, 2015, 53 (06) : 882 - 886