Subfitness in distributive (semi)lattices

被引:0
|
作者
Bezhanishvili, G. [1 ]
Madden, J. [2 ]
Moshier, M. A. [3 ]
Tressl, M. [4 ]
Walters-Wayland, J. [3 ]
机构
[1] New Mexico State Univ, Las Cruces, NM USA
[2] Louisiana State Univ Baton Rouge, Baton Rouge, LA USA
[3] Chapman Univ, Orange, CA USA
[4] Univ Manchester, Manchester, England
关键词
Subfitness; Semilattice; Distributive lattice; Frame; Distributive envelope; LATTICES; PRIME;
D O I
10.1007/s00233-025-10506-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate whether the set of subfit elements of a distributive semilattice is an ideal. This question was raised by the second author at the BLAST conference in 2022. We show that in general it has a negative solution, however if the semilattice is a lattice, then the solution is positive. This is somewhat unexpected since, as we show, a semilattice is subfit if and only if so is its distributive lattice envelope.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] CHARACTERIZATION OF DISTRIBUTIVE LATTICES
    DORNINGER, D
    MONATSHEFTE FUR MATHEMATIK, 1976, 81 (01): : 1 - 3
  • [22] Homology of distributive lattices
    Józef H. Przytycki
    Krzysztof K. Putyra
    Journal of Homotopy and Related Structures, 2013, 8 : 35 - 65
  • [23] Computability of Distributive Lattices
    Bazhenov, N. A.
    Frolov, A. N.
    Kalimullin, I. Sh.
    Melnikov, A. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (06) : 959 - 970
  • [24] QUANTIFIERS ON DISTRIBUTIVE LATTICES
    CIGNOLI, R
    DISCRETE MATHEMATICS, 1991, 96 (03) : 183 - 197
  • [25] PROJECTIVE DISTRIBUTIVE LATTICES
    BALBES, R
    HORN, A
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 33 (02) : 273 - &
  • [26] AXIOMATICS OF DISTRIBUTIVE LATTICES
    RUEDIN, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (12): : 607 - &
  • [27] ENDOPRIMAL DISTRIBUTIVE LATTICES
    MARKI, L
    POSCHEL, R
    ALGEBRA UNIVERSALIS, 1993, 30 (02) : 272 - 274
  • [28] DISTRIBUTIVE PROJECTIVE LATTICES
    BAKER, KA
    HALES, AW
    CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (03): : 472 - &
  • [29] Distributive lattices of numberings
    Khisamiev, Z. G.
    ALGEBRA AND LOGIC, 2007, 46 (01) : 50 - 61
  • [30] Homology of distributive lattices
    Przytycki, Jozef H.
    Putyra, Krzysztof K.
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2013, 8 (01) : 35 - 65