Legendre Polynomials and Techniques for Collocation in the Computation of Variable-Order Fractional Advection-Dispersion Equations

被引:1
|
作者
Khalid, Thwiba A. [1 ]
Alnoor, Fatima [2 ]
Babeker, Ebtesam [3 ]
Ahmed, Ehssan [3 ]
Mustafa, Alaa [4 ]
机构
[1] Al Baha Univ, Fac Sci, Dept Math, Albaha 65525, Saudi Arabia
[2] Northern Border Univ, Coll Sci & Art, Dept Math, Turaif 75211, Saudi Arabia
[3] Northern Border Univ, Coll Sci, Dept Math, Ar Ar 75211, Saudi Arabia
[4] Northern Border Univ, Coll Sci & Arts, Dept Math, Rafha 75211, Saudi Arabia
关键词
derivative of variable order; advection-dispersion in fractions; time fraction; fractional mobile immobile equation; Legendre polynomials;
D O I
10.28924/2291-8639-22-2024-185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper discusses a numerical approach to solving complicated partial differential equations, with a particular emphasis on fractional advection-dispersion equations of space-time variable order. With the use of fractional derivative matrices, Legendre polynomials, and numerical examples and comparisons, it surpasses current methods by utilizing spectral collocation techniques. It resolves equations involving spatial and time variables that are variable-order fractional advection-dispersion (VOFADE). Legendre polynomials serve as basis functions in this method, whereas Legendre operational matrices are employed for fractional derivatives. The technique is more computationally efficient since it reduces fractional advection-dispersion equations to systems of algebraic equations. Numerical examples and a comparison with current approaches illustrate the method's superior performance in solving complicated partial differential equations, especially in the context of transport processes.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations
    M. A. Abdelkawy
    A. Z. M. Amin
    António M. Lopes
    Computational and Applied Mathematics, 2022, 41
  • [22] Exploring fractional Advection-Dispersion equations with computational methods: Caputo operator and Mohand techniques
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Mahnashi, Ali M.
    AIMS MATHEMATICS, 2025, 10 (01): : 234 - 269
  • [23] Derivation and numerical validation of the fundamental solutions for constant and variable-order structural derivative advection-dispersion models
    Wang, Fajie
    Cai, Wei
    Zheng, Bin
    Wang, Chao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [24] Fractional advection-dispersion equations for modeling transport at the Earth surface
    Schumer, Rina
    Meerschaert, Mark M.
    Baeumer, Boris
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2009, 114
  • [25] Existence of nontrivial solutions for a system of fractional advection-dispersion equations
    Ma, Dexiang
    Liu, Lishan
    Wu, Yonghong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1041 - 1057
  • [26] A Convergent Legendre Spectral Collocation Method for the Variable-Order Fractional-Functional Optimal Control Problems
    Pirouzeh, Zahra
    Skandari, Mohammad Hadi Noori
    Pirbazari, Kameleh Nassiri
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [27] Finite difference approximations for fractional advection-dispersion flow equations
    Meerschaert, MM
    Tadjeran, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) : 65 - 77
  • [28] Multidimensional fractional advection-dispersion equations and related stochastic processes
    D'Ovidio, Mirko
    Garra, Roberto
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [29] Space-fractional advection-dispersion equations by the Kansa method
    Pang, Guofei
    Chen, Wen
    Fu, Zhuojia
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 280 - 296
  • [30] Jacobi collocation method for the fractional advection-dispersion equation arising in porous media
    Singh, Harendra
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (03) : 636 - 653