A Diffusion Model for Traffic Data Imputation

被引:0
|
作者
Lu, Bo [1 ,2 ]
Miao, Qinghai [1 ]
Liu, Yahui [3 ,4 ]
Tamir, Tariku Sinshaw [3 ,5 ]
Zhao, Hongxia [3 ]
Zhang, Xiqiao [6 ]
Lv, Yisheng [3 ]
Wang, Fei-Yue [3 ]
机构
[1] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[2] Baidu Inc, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
[4] Meituan, Beijing 100050, Peoples R China
[5] Guangdong Univ Technol, Guangzhou 510520, Peoples R China
[6] Harbin Inst Technol, Sch Transportat Sci & Technol, Dept Transportat Engn, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Image synthesis; Electricity; Time series analysis; Predictive models; Feature extraction; Imputation; Data models; Intelligent transportation systems; Data imputation; diffusion model; implicit feature; time series; traffic data; PREDICTION;
D O I
10.1109/JAS.2024.124611
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems (ITS) in the real world. As a state-of-the-art generative model, the diffusion model has proven highly successful in image generation, speech generation, time series modelling etc. and now opens a new avenue for traffic data imputation. In this paper, we propose a conditional diffusion model, called the implicit-explicit diffusion model, for traffic data imputation. This model exploits both the implicit and explicit feature of the data simultaneously. More specifically, we design two types of feature extraction modules, one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series. This approach not only inherits the advantages of the diffusion model for estimating missing data, but also takes into account the multi-scale correlation inherent in traffic data. To illustrate the performance of the model, extensive experiments are conducted on three real-world time series datasets using different missing rates. The experimental results demonstrate that the model improves imputation accuracy and generalization capability.
引用
收藏
页码:606 / 617
页数:12
相关论文
共 50 条
  • [41] MISSING DATA IN TRAFFIC ESTIMATION: A VARIATIONAL AUTOENCODER IMPUTATION METHOD
    Boquet, Guillem
    Lopez Vicario, Jose
    Morell, Antoni
    Serrano, Javier
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2882 - 2886
  • [42] Missing value imputation for the analysis of incomplete traffic accident data
    Deb, Rupam
    Liew, Alan Wee -Chung
    INFORMATION SCIENCES, 2016, 339 : 274 - 289
  • [43] A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation
    Chen, Xinyu
    He, Zhaocheng
    Sun, Lijun
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 98 : 73 - 84
  • [44] A data imputation model in sensor databases
    Jiang, Nan
    HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, PROCEEDINGS, 2007, 4782 : 86 - 96
  • [45] Learning Traffic as Videos: A Spatio-Temporal VAE Approach for Traffic Data Imputation
    Chen, Jiayuan
    Zhang, Shuo
    Chen, Xiaofei
    Jiang, Qiao
    Huang, Hejiao
    Gu, Chonglin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 : 615 - 627
  • [46] Traffic Speed Data Imputation Method Based on Tensor Completion
    Ran, Bin
    Tan, Huachun
    Feng, Jianshuai
    Liu, Ying
    Wang, Wuhong
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [47] An Imputation Model for Dropouts in Unemployment Data
    Nilsson, Petra
    JOURNAL OF OFFICIAL STATISTICS, 2016, 32 (03) : 719 - 732
  • [48] Imputation of Missing Traffic Flow Data Using Denoising Autoencoders
    Jiang, Boyuan
    Siddiqi, Muhammad Danial
    Asadi, Reza
    Regan, Amelia
    12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 84 - 91
  • [49] BACP: Bayesian Augmented CP Factorization for Traffic Data Imputation
    Huang, Rongping
    Gong, Wenwu
    Lu, Jiaxin
    Huang, Zhejun
    Yang, Lili
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 108 - 120
  • [50] A Hybrid Data-Driven Framework for Spatiotemporal Traffic Flow Data Imputation
    Wang, Peixiao
    Hu, Tao
    Gao, Fei
    Wu, Ruijie
    Guo, Wei
    Zhu, Xinyan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17) : 16343 - 16352