A medium-entropy garnet-type oxide as a solid electrolyte with enhanced air stability for Li-ion batteries

被引:0
|
作者
Kuo, Chun-Han [1 ,2 ]
Huang, Po-Yen [1 ]
Wang, Ai-Yin [1 ]
Liu, Hao-Yu [1 ]
Cheng, Hsu-Chen [1 ]
Lee, Chih-Heng [3 ]
Hsing, Cheng-Rong [4 ,5 ]
Chen, Shu-Yu [1 ]
Yeh, Chien-Hao [1 ]
Chen, Hsiang-Jung [1 ]
Chen, Huaican [7 ,8 ]
Yin, Wen [7 ,8 ]
Wu, Jianyuan [7 ,8 ]
Pao, Chih-Wen [9 ]
Kan, Wang Hay [7 ,8 ]
Chen, Hsin-Yi Tiffany [1 ,3 ,6 ]
Chen, Han-Yi [1 ,2 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 300044, Taiwan
[2] High Entropy Mat Ctr, Hsinchu 300044, Taiwan
[3] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 300044, Taiwan
[4] Chang Gung Univ, Ctr Gen Educ, Div Nat Sci, Taoyuan City 33302, Taiwan
[5] Chang Gung Univ, Dept Artificial Intelligence, Taoyuan City 33302, Taiwan
[6] Natl Tsing Hua Univ, Coll Semicond Res, Hsinchu 300044, Taiwan
[7] Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[8] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China
[9] Natl Synchrotron Radiat Res Ctr, Hsinchu 300092, Taiwan
基金
中国国家自然科学基金;
关键词
LI7LA3ZR2O12; CONDUCTIVITY; AL;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Garnet-type oxides are commonly used as the solid electrolytes for all-solid-state Li-ion batteries. However, the widely utilized Ta-doped Li7La3Zr2O12 (LLZO) readily reacts with CO2 and H2O in air, leading to a decrease in ionic conductivity. In this study, a novel medium-entropy garnet-type oxide, Li6.5La3Zr0.5Ta0.5Nb0.5Y0.5O12 (LLZTNYO), was successfully synthesized using a conventional solid-phase synthetic method. Ta, Nb, and Y were strategically substituted with Zr to significantly enhance conductivity, improve stability in air, and lower the sintering temperature. Neutron powder diffraction was used to resolve the unusual local structural properties of LLZTNYO. LLZTNYO achieved a high Li-ion conductivity of 1.87 x 10-4 S cm-1 and maintained a constant Li-ion conductivity for 30 days in an air atmosphere without decay, demonstrating excellent air stability. The density functional theory calculations suggest that the multi-doping strategy can effectively suppress hydration reactions and thus enhance the stability of the solid electrolyte against water. Furthermore, the Li//LLZTNYO//LiFePO4 solid state battery exhibited high capacity up to 167 mA h g-1 with excellent cycling retention of 95% after 200 cycles at 0.1C, positioning LLZTNYO as a practicable material for use as a solid electrolyte for Li-ion batteries.
引用
收藏
页码:8608 / 8618
页数:11
相关论文
共 50 条
  • [41] Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-Ion Batteries
    Cao, Chuntian
    Abate, Iwnetim Iwnetu
    Sivonxay, Eric
    Shyam, Badri
    Jia, Chunjing
    Moritz, Brian
    Devereaux, Thomas P.
    Persson, Kristin A.
    Steinruck, Hans-Georg
    Toney, Michael F.
    JOULE, 2019, 3 (03) : 762 - 781
  • [42] Enhanced Li-Ion Conductivity and Air Stability of Sb-Substituted Li4GeS4 toward All-Solid-State Li-Ion Batteries
    Roh, Jihun
    Lyoo, Jeyne
    Hong, Seung-Tae
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (10) : 5446 - 5455
  • [43] High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the doping Ca ions
    Song, Shufeng
    Sheptyakov, Denis
    Korsunsky, Alexander M.
    Duong, Hai M.
    Lu, Li
    MATERIALS & DESIGN, 2016, 93 : 232 - 237
  • [44] Oxygenated Li3PS4 electrolyte with improved conductivity and air stability for all-solid-state Li-ion batteries
    Narsimulu, D.
    Subramanian, Yuvaraj
    Rajagopal, Rajesh
    Ryu, Kwang-Sun
    ELECTROCHIMICA ACTA, 2025, 511
  • [45] Recent progress on garnet-type oxide electrolytes for all-solid-state lithium-ion batteries
    Han, Yu
    Chen, Yonghui
    Huang, Yunxia
    Zhang, Maolin
    Li, Zhimin
    Wang, Yuan
    CERAMICS INTERNATIONAL, 2023, 49 (18) : 29375 - 29390
  • [46] Dense garnet-type electrolyte with coarse grains for improved air stability and ionic conductivity
    Zeng, Xiaomei
    Martinolich, Andrew J.
    See, Kimberly A.
    Faber, Katherine T.
    JOURNAL OF ENERGY STORAGE, 2020, 27
  • [47] An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12
    Meesala, Yedukondalu
    Liao, Yu-Kai
    Jena, Anirudha
    Yang, Nai-Hsuan
    Pang, Wei Kong
    Hu, Shu-Fen
    Chang, Ho
    Liu, Chia-Erh
    Liao, Shih-Chieh
    Chen, Jin-Ming
    Guo, Xiangxin
    Liu, Ru-Shi
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (14) : 8589 - 8601
  • [48] Identifying the components of the solid-electrolyte interphase in Li-ion batteries
    Wang, Luning
    Menakath, Anjali
    Han, Fudong
    Wang, Yi
    Zavalij, Peter Y.
    Gaskell, Karen J.
    Borodino, Oleg
    Iuga, Dinu
    Brown, Steven P.
    Wang, Chunsheng
    Xu, Kang
    Eichhorn, Bryan W.
    NATURE CHEMISTRY, 2019, 11 (09) : 789 - 796
  • [49] Research Progresses of Garnet-Type Solid Electrolytes for Developing All-Solid-State Li Batteries
    Kim, Abin
    Woo, Seungjun
    Kang, Minseok
    Park, Heetaek
    Kang, Byoungwoo
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [50] Review of Garnet-Based Solid Electrolytes for Li-Ion Batteries (LIBs)
    Pravin Kodgire
    Brijesh Tripathi
    Prakash Chandra
    Journal of Electronic Materials, 2024, 53 : 2203 - 2228