Instruction-Guided Scene Text Recognition

被引:0
|
作者
Du, Yongkun [1 ]
Chen, Zhineng [1 ]
Su, Yuchen [1 ]
Jia, Caiyan [2 ]
Jiang, Yu-Gang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Beijing Jiaotong Univ, Sch Comp Sci & Technol, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Text recognition; Character recognition; Visualization; Pipelines; Computational modeling; Optical character recognition; Training; Large language models; Context modeling; Benchmark testing; Scene text recognition; instruction learning; multi-modal learning; character attribute; NETWORK;
D O I
10.1109/TPAMI.2025.3525526
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-modal models have shown appealing performance in visual recognition tasks, as free-form text-guided training evokes the ability to understand fine-grained visual content. However, current models cannot be trivially applied to scene text recognition (STR) due to the compositional difference between natural and text images. We propose a novel instruction-guided scene text recognition (IGTR) paradigm that formulates STR as an instruction learning problem and understands text images by predicting character attributes, e.g., character frequency, position, etc. IGTR first devises < condition,question,answer > instruction triplets, providing rich and diverse descriptions of character attributes. To effectively learn these attributes through question-answering, IGTR develops a lightweight instruction encoder, a cross-modal feature fusion module and a multi-task answer head, which guides nuanced text image understanding. Furthermore, IGTR realizes different recognition pipelines simply by using different instructions, enabling a character-understanding-based text reasoning paradigm that differs from current methods considerably. Experiments on English and Chinese benchmarks show that IGTR outperforms existing models by significant margins, while maintaining a small model size and fast inference speed. Moreover, by adjusting the sampling of instructions, IGTR offers an elegant way to tackle the recognition of rarely appearing and morphologically similar characters, which were previous challenges.
引用
收藏
页码:2723 / 2738
页数:16
相关论文
共 50 条
  • [21] Summary of Scene Text Detection and Recognition
    Qin, Yao
    Zhang, Zhi
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 85 - 89
  • [22] Review of Scene Text Detection and Recognition
    Han Lin
    Peng Yang
    Fanlong Zhang
    Archives of Computational Methods in Engineering, 2020, 27 : 433 - 454
  • [23] Edit Probability for Scene Text Recognition
    Bai, Fan
    Cheng, Zhanzhan
    Niu, Yi
    Pu, Shiliang
    Zhou, Shuigeng
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1508 - 1516
  • [24] Review network for scene text recognition
    Li, Shuohao
    Han, Anqi
    Chen, Xu
    Yin, Xiaoqing
    Zhang, Jun
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (05)
  • [25] Portmanteauing Features for Scene Text Recognition
    Tan, Yew Lee
    Chew, Ernest Yu Kai
    Kong, Adams Wai-Kin
    Kim, Jung-Jae
    Lim, Joo Hwee
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1499 - 1505
  • [26] A New Model for Scene Text Recognition
    Wang M.-S.
    Jiang X.-S.
    Niu S.-Z.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 (03): : 269 - 275
  • [27] Scene text detection and recognition: a survey
    Fatemeh Naiemi
    Vahid Ghods
    Hassan Khalesi
    Multimedia Tools and Applications, 2022, 81 : 20255 - 20290
  • [28] Data Augmentation for Scene Text Recognition
    Atienza, Rowel
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1561 - 1570
  • [29] Review of Scene Text Detection and Recognition
    Lin, Han
    Yang, Peng
    Zhang, Fanlong
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2020, 27 (02) : 433 - 454
  • [30] Curriculum learning for scene text recognition
    Yan, Jingzhe
    Tao, Yuefeng
    Zhang, Wanjun
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (04)