X-Band and Low-RCS Flexible Wideband Antenna Array Based on Metasurface

被引:0
|
作者
Chen, Hongzhi [1 ]
Zhen, Qiutong [1 ]
Chen, Jing [2 ]
Sun, Haoyuan [1 ]
Li, Haoran [1 ]
Chernogor, Leonid F. [1 ,3 ]
Sun, Zhongsen [1 ]
Zheng, Yu [1 ]
Liu, Tian [1 ]
Jin, Zhejun [1 ]
机构
[1] Qingdao Univ, Coll Elect & Informat, Qingdao 266071, Peoples R China
[2] Jilin Univ, Coll Elect Sci & Engn, Int Ctr Future Sci, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
[3] Kharkov Natl Univ, Dept Space Radio Phys, UA-61022 Kharkiv, Ukraine
来源
关键词
Metasurfaces; Antennas; Antenna arrays; Phase change materials; Reflection coefficient; Slot antennas; Electric fields; Sun; Radar cross-sections; Radar antennas; Antenna; flexible; polarization conversion metasurface (PCM); radar cross section (RCS); X band; BROAD-BAND; REDUCTION;
D O I
10.1109/LAWP.2024.3507619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Transparent metasurface-loaded flexible antenna for the X band. The dumbbell-shaped metasurface is a type of polarization conversion unit arranged in a checkerboard pattern. This structure achieves 10 dB linear polarization radar cross-section (RCS) reduction under vertical incidence within the 9.2 GHz to 21.2 GHz range. Attach it to a slotted antenna array powered by a 1-to-4 Wilkinson power divider. The antenna has good radiation characteristics within the bandwidth of the X band. This antenna design boasts a low profile (0.14 lambda(0)), flexibility, and interference resistance. In the 0 degrees-90 degrees central angle bending scenario, the structure maintains good RCS reduction and antenna radiation properties, while also effectively reducing electromagnetic waves at 0 degrees-45 degrees angle, making it highly suitable for wider applications such as detection radar, satellite communications, and medical equipment.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 50 条
  • [31] Low-RCS, High-Gain, and Wideband Mushroom Antenna
    Jia, Yongtao
    Liu, Ying
    Wang, Hui
    Li, Kun
    Gong, Shuxi
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 277 - 280
  • [32] An X-band parabolic antenna based on gradient metasurface
    Yao, Wang
    Yang, Helin
    Huang, Xiaojun
    Tian, Ying
    Guo, Linyan
    AIP ADVANCES, 2016, 6 (07):
  • [33] Low-RCS Beam-Steering Antenna Based on Reconfigurable Phase Gradient Metasurface
    Yu, Jun
    Jiang, Wen
    Gong, Shuxi
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (10): : 2016 - 2020
  • [34] Low-RCS and High-Gain Circularly Polarized Metasurface Antenna
    Fan, Ya
    Wang, Jiafu
    Li, Yongfeng
    Zhang, Jieqiu
    Han, Yajuan
    Qu, Shaobo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (12) : 7197 - 7203
  • [35] A Novel Metasurface-based Low-RCS Fabry-Perot Cavity Antenna
    Bian, Borui
    Zhang, Haifeng
    Liu, Shaobin
    Kong, Xiangkun
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 720 - 726
  • [36] Low-RCS Antenna Array With Switchable Scattering Patterns Employing Microfluidic Liquid Metal Alloy-Based Metasurface
    Liu, Ying
    Liu, Zhaosong
    Wang, Qia
    Jia, Yongtao
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (12) : 8955 - 8960
  • [37] Design of multi-band metasurface antenna array with low RCS performance
    Wang, Si-Ming
    Gao, Jun
    Cao, Xiang-Yu
    Zheng, Yue-Jun
    Li, Tong
    Lan, Jun-Xiang
    Ji-Di, Liao-Ri
    CHINESE PHYSICS B, 2018, 27 (10)
  • [38] Broadband Low-RCS Circularly Polarized Antenna Realized by Nonuniform Metasurface
    Gao, Xi
    Yin, Sijie
    Wang, Guofu
    Xue, Chunhua
    Xie, Xianming
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (12): : 2417 - 2421
  • [39] Design of multi-band metasurface antenna array with low RCS performance
    王思铭
    高军
    曹祥玉
    郑月军
    李桐
    兰俊祥
    吉地辽日
    Chinese Physics B, 2018, 27 (10) : 312 - 318
  • [40] Broadband Low-RCS Circularly Polarized Array Using Metasurface-Based Element
    Zhao, Yi
    Cao, Xiangyu
    Gao, Jun
    Xu, Liming
    Liu, Xiao
    Cong, Lili
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 : 1836 - 1839