Deep learning based prediction of depression and anxiety in patients with type 2 diabetes mellitus using regional electronic health records

被引:0
|
作者
Feng, Wei [1 ,2 ,8 ,9 ]
Wu, Honghan [3 ]
Ma, Hui [6 ]
Yin, Yuechuchu [2 ,4 ]
Tao, Zhenhuan [7 ]
Lu, Shan [2 ,4 ]
Zhang, Xin [2 ,4 ]
Yu, Yun [2 ,5 ,8 ]
Wan, Cheng [2 ,5 ]
Liu, Yun [2 ,4 ]
机构
[1] Nanjing Med Univ, Affiliated Wuxi Peoples Hosp, Dept Informat, Wuxi, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Sch Biomed Engn & Informat, Dept Med Informat, Nanjing, Jiangsu, Peoples R China
[3] UCL, Inst Hlth Informat, London, England
[4] Nanjing Med Univ, Affiliated Hosp 1, Dept Informat, Nanjing, Jiangsu, Peoples R China
[5] Nanjing Med Univ, Inst Med Informat & Management, Nanjing, Jiangsu, Peoples R China
[6] Nanjing Med Univ, Nanjing Brain Hosp, Dept Med Psychol, Nanjing, Jiangsu, Peoples R China
[7] Nanjing Hlth Informat Ctr, Nanjing, Jiangsu, Peoples R China
[8] Nanjing Med Univ, Wuxi Med Ctr, Wuxi, Jiangsu, Peoples R China
[9] Wuxi Peoples Hosp, Wuxi, Jiangsu, Peoples R China
关键词
Type 2 diabetes mellitus; Depression and anxiety; Prediction model; Deep learning; Transformers; Multimodal data; CARE;
D O I
10.1016/j.ijmedinf.2025.105801
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background: Depression and anxiety are prevalent mental health conditions among individuals with type 2 diabetes mellitus (T2DM), who exhibit unique vulnerabilities and etiologies. However, existing approaches fail to fully utilize regional heterogeneous electronic health record (EHR) data. Integrating this data can provide a more comprehensive understanding of depression and anxiety in T2DM patients, leading to more personalized treatment strategies. Objective: This study aims to develop and validate a deep learning model, the Regional EHR for Depression and Anxiety Prediction Model (REDAPM), using regional EHR data to predict depression and anxiety in patients with T2DM. Methods: A case-control development and validation study was conducted using regional EHR data from the Nanjing Health Information Center (NHIC). Two retrospective, matched (1:3) datasets were constructed from the full cohort for the model's internal and external validation. These two datasets were selected from the NHIC data of 2020 and 2022, respectively. The REDAPM incorporates both structured and unstructured EHR data, capturing the temporal dependency of clinical events. The performance of REDAPM was compared to a set of baseline models, evaluated using the area under the receiver operating characteristic curve (ROC-AUC) and the area under the precision-recall curve (PR-AUC). Subgroup, ablation, and interpretation analyses were conducted to identify relevant clinical features available from EHRs. Results: The internal and external validation datasets comprised 24,724 and 34,340 patients, respectively. The REDAPM outperformed baseline models in both datasets, achieving ROC-AUC scores of 0.9029 +/- 0.008 and 0.7360 +/- 0.005, and PR-AUC scores of 0.8124 +/- 0.011 and 0.5504 +/- 0.009. Ablation and subgroup experiments confirmed the significant contribution of patients' medical history text to the model's performance. Integrated gradient score analysis identified the predictive importance of other mental disorders. Conclusion: The REDAPM effectively leverages the heterogeneous characteristics of regional EHR data, demonstrating strong predictive performance for depression onset in diabetic patients. It also shows potential for discovering significant clinical features, indicating considerable promise for clinical utility.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Subphenotyping depression using machine learning and electronic health records
    Xu, Zhenxing
    Wang, Fei
    Adekkanattu, Prakash
    Bose, Budhaditya
    Vekaria, Veer
    Brandt, Pascal
    Jiang, Guoqian
    Kiefer, Richard C.
    Luo, Yuan
    Pacheco, Jennifer A.
    Rasmussen, Luke V.
    Xu, Jie
    Alexopoulos, George
    Pathak, Jyotishman
    LEARNING HEALTH SYSTEMS, 2020, 4 (04):
  • [32] Prediction of gestational diabetes based on nationwide electronic health records
    Artzi, Nitzan Shalom
    Shilo, Smadar
    Hadar, Eran
    Rossman, Hagai
    Barbash-Hazan, Shiri
    Ben-Haroush, Avi
    Balicer, Ran D.
    Feldman, Becca
    Wiznitzer, Arnon
    Segal, Eran
    NATURE MEDICINE, 2020, 26 (01) : 71 - +
  • [33] Prediction of gestational diabetes based on nationwide electronic health records
    Nitzan Shalom Artzi
    Smadar Shilo
    Eran Hadar
    Hagai Rossman
    Shiri Barbash-Hazan
    Avi Ben-Haroush
    Ran D. Balicer
    Becca Feldman
    Arnon Wiznitzer
    Eran Segal
    Nature Medicine, 2020, 26 : 71 - 76
  • [34] Roles of Anxiety and Depression in Predicting Cardiovascular Disease Among Patients With Type 2 Diabetes Mellitus: A Machine Learning Approach
    Chu, Haiyun
    Chen, Lu
    Yang, Xiuxian
    Qiu, Xiaohui
    Qiao, Zhengxue
    Song, Xuejia
    Zhao, Erying
    Zhou, Jiawei
    Zhang, Wenxin
    Mehmood, Anam
    Pan, Hui
    Yang, Yanjie
    FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [35] Deep Learning Analysis of Polish Electronic Health Records for Diagnosis Prediction in Patients with Cardiovascular Diseases
    Anetta, Kristof
    Horak, Ales
    Wojakowski, Wojciech
    Wita, Krystian
    Jadczyk, Tomasz
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (06):
  • [36] DBNet: A Novel Deep Learning Framework for Mechanical Ventilation Prediction Using Electronic Health Records
    Zhang, Kai
    Jiang, Xiaoqian
    Madadi, Mahboubeh
    Chen, Luyao
    Savitz, Sean
    Shams, Shayan
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [37] Deep Learning Based Diabetes Mellitus Prediction for Healthcare Monitoring
    Karunakaran, Deepa
    Chandran, Ranjeeth Kumar
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (06) : 4399 - 4413
  • [38] Deep Learning Based Diabetes Mellitus Prediction for Healthcare Monitoring
    Deepa Karunakaran
    Ranjeeth Kumar Chandran
    Journal of Electrical Engineering & Technology, 2023, 18 : 4399 - 4413
  • [39] Using deep learning and electronic health records to detect Noonan syndrome in pediatric patients
    Yang, Zeyu
    Shikany, Amy
    Ni, Yizhao
    Zhang, Ge
    Weaver, K. Nicole
    Chen, Jing
    GENETICS IN MEDICINE, 2022, 24 (11) : 2329 - 2337
  • [40] Deep learning-based prediction of Clostridioides difficile infection caused by antibiotics using longitudinal electronic health records
    Kim, Junmo
    Kim, Joo Seong
    Kim, Sae-Hoon
    Yoo, Sooyoung
    Lee, Jun Kyu
    Kim, Kwangsoo
    NPJ DIGITAL MEDICINE, 2024, 7 (01):