Local minima in quantum systems

被引:0
|
作者
Chen, Chi-Fang [1 ,2 ]
Huang, Hsin-Yuan [1 ,3 ,4 ]
Preskill, John [1 ,2 ]
Zhou, Leo [1 ,5 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[3] Google Quantum AI, Venice, CA 02135 USA
[4] MIT, Cambridge, MA 02139 USA
[5] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
基金
美国能源部; 美国国家科学基金会;
关键词
RENORMALIZATION-GROUP; COMPLEXITY; COMPUTATION; STATE; GENERATORS; ALGORITHMS;
D O I
10.1038/s41567-025-02781-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding ground states of quantum many-body systems is known to be hard for both classical and quantum computers. Consequently, when a quantum system is cooled in a low-temperature thermal bath, the ground state cannot always be found efficiently. Instead, the system may become trapped in a local minimum of the energy. In this work, we study the problem of finding local minima in quantum systems under thermal perturbations. Although local minima are much easier to find than ground states, we show that finding a local minimum is hard on classical computers, even when the task is merely to output a single-qubit observable at any local minimum. By contrast, we prove that a quantum computer can always find a local minimum efficiently using a thermal gradient descent algorithm that mimics natural cooling processes. To establish the classical hardness of finding local minima, we construct a family of two-dimensional Hamiltonians such that any problem solvable by polynomial-time quantum algorithms can be reduced to finding local minima of these Hamiltonians. Therefore, cooling systems to local minima is universal for quantum computation and, assuming that quantum computation is more powerful than classical computation, finding local minima is classically hard but quantumly easy.
引用
收藏
页码:654 / 660
页数:10
相关论文
共 50 条
  • [21] Local controllability of quantum systems
    Puchala, Zbigniew
    QUANTUM INFORMATION PROCESSING, 2013, 12 (01) : 459 - 466
  • [22] Local quantum uncertainty for multipartite quantum systems
    Ali, Mazhar
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (09):
  • [23] Local quantum uncertainty for multipartite quantum systems
    Mazhar Ali
    The European Physical Journal D, 2020, 74
  • [24] ON DESCENT FROM LOCAL MINIMA
    GOLDSTEIN AA
    PRICE, JF
    MATHEMATICS OF COMPUTATION, 1971, 25 (115) : 569 - 574
  • [25] Continuity of Minima: Local Results
    Feinberg, Eugene A.
    Kasyanov, Pavlo O.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2015, 23 (03) : 485 - 499
  • [26] Continuity of Minima: Local Results
    Eugene A. Feinberg
    Pavlo O. Kasyanov
    Set-Valued and Variational Analysis, 2015, 23 : 485 - 499
  • [27] On the Local Minima of the Empirical Risk
    Jin, Chi
    Liu, Lydia T.
    Ge, Rong
    Jordan, Michael I.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [28] LOCAL MINIMA IN SIMULTANEOUS EQUILIBRIA
    HABERLAND, D
    MENTEL, J
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1977, 258 (06): : 1183 - 1186
  • [29] LOCAL MINIMA OF NONCONVEX PROBLEMS
    MASCOLO, E
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (07) : 593 - 605
  • [30] EXACT PENALTIES FOR LOCAL MINIMA
    DOLECKI, S
    ROLEWICZ, S
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (05) : 596 - 606