Classification of the Conformally Flat Centroaffine Hypersurfaces with Vanishing Centroaffine Shape Operator

被引:0
|
作者
Miaoxin LEI [1 ]
Ruiwei XU [2 ]
Peibiao ZHAO [3 ]
机构
[1] School of Mathematics and Statistics, Nanjing University of Science and Technology
[2] School of Mathematics and Statistics, Henan Normal University
[3] Corresponding author School of Mathematics and Statistics, Nanjing University of Science and
关键词
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
摘要
Cheng-Hu-Moruz(2017) completely classified the locally strongly convex centroaffine hypersurfaces with parallel cubic form based on the Calabi product(called the type I Calabi product for short) proposed by Li-Wang(1991).In the present paper, the authors introduce the type II Calabi product(in case λ1 =2λ2), complementing the type I Calabi product(in case λ1 =≠ 2λ2), and achieve a classification of the locally strongly convex centroaffine hypersurfaces in Rn+1with vanishing centroaffine shape operator and Weyl curvature tensor by virtue of the types I and II Calabi product.As a corollary, 3-dimensional complete locally strongly convex centroaffine hypersurfaces with vanishing centroaffine shape operator are completely classified, which positively answers the centroaffine Bernstein problems III and V by Li-Li-Simon(2004).
引用
收藏
页码:163 / 180
页数:18
相关论文
共 50 条
  • [31] δ#(2,2)-Ideal Centroaffine Hypersurfaces of Dimension 4
    Yildirim, Handan
    Vrancken, Luc
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06): : 1075 - 1104
  • [32] Lightlike pseudo-isotropic centroaffine Lorentzian hypersurfaces of dimension 3
    Birembaux, Olivier
    Cao, Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (02)
  • [33] Classification of the conformally flat Tchebychev affine Kähler hypersurfaces
    Lei, Miaoxin
    Xu, Ruiwei
    Zhao, Peibiao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [34] Minimal Conformally Flat Hypersurfaces
    C. do Rei Filho
    R. Tojeiro
    The Journal of Geometric Analysis, 2019, 29 : 2931 - 2956
  • [35] COMPACT CONFORMALLY FLAT HYPERSURFACES
    DOCARMO, M
    DAJCZER, M
    MERCURI, F
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1983, 55 (02): : 155 - 157
  • [36] A duality for conformally flat hypersurfaces
    Hertrich-Jeromin U.
    Suyama Y.
    Umehara M.
    Yamada K.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (2): : 655 - 676
  • [37] Hypersurfaces in a conformally flat space
    Eyasmin, Sabina
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (05)
  • [38] Conformally flat Lorentz hypersurfaces
    Guediri, M
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 47 (2-3) : 161 - 176
  • [39] CHARACTERIZATIONS OF CONFORMALLY FLAT HYPERSURFACES
    DEPREZ, J
    VERHEYEN, P
    VERSTRAELEN, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1985, 35 (01) : 140 - 145
  • [40] HYPERSURFACES OF A CONFORMALLY FLAT SPACE
    CHEN, B
    YANO, K
    TENSOR, 1972, 26 : 318 - 322