Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm

被引:0
|
作者
Yuzhe Yang [1 ]
Weiye Song [1 ]
Shuang Han [1 ]
Jie Yan [1 ]
Han Wang [1 ]
Qiangsheng Dai [2 ]
Xuesong Huo [2 ]
Yongqian Liu [1 ]
机构
[1] North China Electric Power University
[2] State Grid Jiangsu Electric Power Company
关键词
D O I
暂无
中图分类号
TM614 [风能发电]; TP18 [人工智能理论];
学科分类号
0807 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of wind power clusters has scaled in terms of both scale and coverage, and the impact of weather fluctuations on cluster output changes has become increasingly complex. Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting. To this end, this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent crossmapping algorithm. From the perspective of causality, key meteorological forecasting factors under different cluster power fluctuation processes were screened, and refined training modeling was performed for different fluctuation processes. First, a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes. A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is proposed to screen meteorological forecasting factors under multiple types of typical fluctuation processes. Finally, a refined modeling method for a variety of different typical fluctuation processes is proposed, and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power. An example analysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%, which is 1.57–7.32% higher than that of traditional methods.
引用
收藏
页码:28 / 42
页数:15
相关论文
共 50 条
  • [1] Ultra-short-term wind power forecasting method based on a cross LOF preprocessing algorithm and an attention mechanism
    Wang X.
    Cai X.
    Li Z.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2020, 48 (23): : 92 - 99
  • [2] An ultra-short-term wind power forecasting method in regional grids
    Li, Zhi
    Han, Xueshan
    Han, Li
    Kang, Kai
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2010, 34 (07): : 90 - 94
  • [3] Ultra-short-term Forecasting Method of Wind Power Based on Fluctuation Law Mining
    Liang Z.
    Wang Z.
    Feng S.
    Dong C.
    Wan X.
    Qiu G.
    Wang, Zheng (wangz@epri.sgcc.com.cn), 1600, Power System Technology Press (44): : 4096 - 4104
  • [4] Ultra-Short-Term Wind Power Subsection Forecasting Method Based on Extreme Weather
    Yu, Guang Zheng
    Lu, Liu
    Tang, Bo
    Wang, Si Yuan
    Chung, C. Y.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5045 - 5056
  • [5] Ultra-short-term wind power forecasting based on feature weight analysis and cluster dynamic division
    Chang, Chen
    Meng, Yuyu
    Huo, Jiuyuan
    Xu, Jihao
    Xie, Tian
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (02)
  • [6] Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method
    Fan, Huijing
    Zhen, Zhao
    Liu, Nian
    Sun, Yiqian
    Chang, Xiqiang
    Li, Yu
    Wang, Fei
    Mi, Zengqiang
    ENERGY, 2023, 266
  • [7] Research on Wind Power Ultra-short-term Forecasting Method Based on PCA-LSTM
    Wu, Siying
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508
  • [8] A novel ultra-short-term wind power forecasting method based on TCN and Informer models
    Li, Qi
    Ren, Xiaoying
    Zhang, Fei
    Gao, Lu
    Hao, Bin
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [9] Ultra-short-term Wind Power Forecasting Based on Switching Output Mechanism
    Yang M.
    Xu C.
    Wang K.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (02): : 420 - 429
  • [10] Ultra-Short-Term Wind Power Forecasting Based on Deep Belief Network
    Wang, Sen
    Sun, Yonghui
    Zhai, Suwei
    Hou, Dongchen
    Wang, Peng
    Wu, Xiaopeng
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7479 - 7483