Research on Wind Power Ultra-short-term Forecasting Method Based on PCA-LSTM

被引:0
|
作者
Wu, Siying [1 ]
机构
[1] Peking Univ, Sch Environm & Energy, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
关键词
D O I
10.1088/1755-1315/508/1/012068
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind power ultra-short-term forecasting can provide the support for adjusting the intraday power generation plan, carrying out the incremental spot trading of wind power, and improving the utilization of wind power. In order to improve the forecast accuracy of wind power, a wind power ultra-short-term power forecast method based on long-term-term memory (LSTM) network is proposed. First, the principal component analysis method is used to reduce the multivariate meteorological time series dimension. Then by using the cyclic memory characteristics of LSTM network to model multi-dimensional time series, the nonlinear mapping relationship between meteorological data and power data is established, and the wind power forecast is finally realized. The actual data of the eastern China wind farm is used to verify the results. It shows the method established in this paper can effectively use the meteorological and power data to forecast the wind power, and compared with the traditional time series, BP neural network method, the method in this paper has higher forecast accuracy and has broad application potential.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ultra-Short-Term Wind Power Forecasting Based on the MSADBO-LSTM Model
    Zhao, Ziquan
    Bai, Jing
    ENERGIES, 2024, 17 (22)
  • [2] A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting
    Shaomei Yang
    Aijia Yuan
    Zhengqin Yu
    Environmental Science and Pollution Research, 2023, 30 (5) : 11689 - 11705
  • [3] Hedge Backpropagation Based Online LSTM Architecture for Ultra-Short-Term Wind Power Forecasting
    Pan, Chunyang
    Wen, Shuli
    Zhu, Miao
    Ye, Huili
    Ma, Jianjun
    Jiang, Sheng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 4179 - 4192
  • [4] Ultra-short-term forecasting of wind power based on multi-task learning and LSTM
    Junqiang, Wei
    Xuejie, Wu
    Tianming, Yang
    Runhai, Jiao
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 149
  • [5] A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting
    Yang, Shaomei
    Yuan, Aijia
    Yu, Zhengqin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (05) : 11689 - 11705
  • [6] An ultra-short-term wind power forecasting method in regional grids
    Li, Zhi
    Han, Xueshan
    Han, Li
    Kang, Kai
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2010, 34 (07): : 90 - 94
  • [7] Ultra-short-term multi-step wind power forecasting based on CNN-LSTM
    Wu, Qianyu
    Guan, Fei
    Lv, Chen
    Huang, Yongzhang
    IET RENEWABLE POWER GENERATION, 2021, 15 (05) : 1019 - 1029
  • [8] Ultra-short-term Forecasting Method of Wind Power Based on Fluctuation Law Mining
    Liang Z.
    Wang Z.
    Feng S.
    Dong C.
    Wan X.
    Qiu G.
    Wang, Zheng (wangz@epri.sgcc.com.cn), 1600, Power System Technology Press (44): : 4096 - 4104
  • [9] Ultra-Short-Term Wind Power Subsection Forecasting Method Based on Extreme Weather
    Yu, Guang Zheng
    Lu, Liu
    Tang, Bo
    Wang, Si Yuan
    Chung, C. Y.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5045 - 5056
  • [10] Ultra-Short-Term Wind Power Prediction Based on eEEMD-LSTM
    Huang, Jingtao
    Zhang, Weina
    Qin, Jin
    Song, Shuzhong
    ENERGIES, 2024, 17 (01)