Microneedles for non-transdermal drug delivery: design strategies and current applications

被引:0
|
作者
Xu, Jinhong [1 ]
Liao, Xiangyi [2 ]
Chen, Danli [2 ]
Jia, Xiuzhuo [3 ]
Niu, Xufeng [2 ]
机构
[1] Fourth Cent Hosp Baoding City, Dept Pharm, Baoding 072350, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Key Lab Biomech & Mechanobiol,Minist Educ, Beijing 100083, Peoples R China
[3] Fourth Cent Hosp Baoding City, Dept Med Business, Baoding 072350, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Microneedles (MNs); Biocompatible materials; Non-transdermal drug delivery; Controlled release; (sic)(sic); (sic)(sic)(sic)(sic)(sic)(sic)(sic); (sic)(sic)(sic)(sic)(sic); (sic)(sic)(sic)(sic); SOLID SILICON MICRONEEDLES; IN-VITRO; BIODEGRADABLE MICRONEEDLES; COATED MICRONEEDLES; DRAWING LITHOGRAPHY; SUSTAINED-RELEASE; PROTEIN DELIVERY; ARRAYS; SYSTEMS; PATCH;
D O I
10.1631/bdm.2300352
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Microneedles (MNs) are an innovative and viable option for drug delivery that offer the distinct advantages of minimal invasiveness, painlessness, stable drug loading, efficient drug permeation, and biocompatibility. MNs were first used to penetrate the skin surface and facilitate transcutaneous drug delivery with great success. Recent applications of MNs have extended to non-transdermal drug delivery, specifically, to various tissues and organs. This review captures the fabrication methods for MNs, discusses advanced design strategies for achieving controlled drug release, and summarizes current MN applications in delivering multiple therapeutic agents to the cardiovascular, digestive (e.g., oral cavity), reproductive, and central nervous systems. The findings in this review would contribute toward the improved designs of MN systems that can be modified according to purpose, including material selection, structural design, choice of fabrication methods, and tissue considerations, to determine the optimal therapeutic regimen for the target treatment area. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic),(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic) ((sic)(sic)(sic)), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
引用
收藏
页码:243 / 274
页数:32
相关论文
共 50 条
  • [41] Microneedles: an emerging transdermal drug delivery system
    Bariya, Shital H.
    Gohel, Mukesh C.
    Mehta, Tejal A.
    Sharma, Om Prakash
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2012, 64 (01) : 11 - 29
  • [42] Dissolving Microneedles for Transdermal Drug Delivery System
    Bai, Chenlin
    Huo, Cheng
    Zhang, Peiyu
    2020 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING, 2020, 1626
  • [43] Current advances in the fabrication of microneedles for transdermal delivery
    Indermun, Sunaina
    Luttge, Regina
    Choonara, Yahya E.
    Kumar, Pradeep
    du Toit, Lisa C.
    Modi, Girish
    Pillay, Viness
    JOURNAL OF CONTROLLED RELEASE, 2014, 185 : 130 - 138
  • [44] Design principles of microneedles for drug delivery and sampling applications
    Le, Zhicheng
    Yu, Jinming
    Quek, Ying Jie
    Bai, Bingyu
    Li, Xianlei
    Shou, Yufeng
    Myint, Ba
    Xu, Chenjie
    Tay, Andy
    MATERIALS TODAY, 2023, 63 : 137 - 169
  • [45] Super-short solid silicon microneedles for transdermal drug delivery applications
    Wei-Ze, Li
    Mei-Rong, Huo
    Jian-Ping, Zhou
    Yong-Qiang, Zhou
    Bao-Hua, Hao
    Ting, Liu
    Yong, Zhang
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2010, 389 (1-2) : 122 - 129
  • [46] Design, fabrication and characterization of in-plane titanium microneedles for transdermal drug delivery
    Li, Wen
    Zhang, Yiming
    Chen, Jing
    MEMS/NEMS NANO TECHNOLOGY, 2011, 483 : 532 - 536
  • [47] Characterization of microneedles and microchannels for enhanced transdermal drug delivery
    Puri, Ashana
    Nguyen, Hiep X.
    Tijani, Akeemat O.
    Banga, Ajay K.
    THERAPEUTIC DELIVERY, 2021, 12 (01) : 77 - 103
  • [48] Dissolving microneedles for transdermal drug delivery in cancer immunotherapy
    Xiang, Maya
    Yang, Chunli
    Zhang, Li
    Wang, Siyi
    Ren, Ya
    Gou, Maling
    JOURNAL OF MATERIALS CHEMISTRY B, 2024, 12 (24) : 5812 - 5822
  • [49] Thermosensitive hydrogel microneedles for controlled transdermal drug delivery
    Li, Jun You
    Feng, Yun Hao
    He, Yu Ting
    Hu, Liu Fu
    Liang, Ling
    Zhao, Ze Qiang
    Chen, Bo Zhi
    Guo, Xin Dong
    ACTA BIOMATERIALIA, 2022, 153 : 308 - 319
  • [50] Dissolving microneedles for transdermal drug delivery: Advances and challenges
    Ita, Kevin
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 93 : 1116 - 1127