Multi-branch LSTM encoded latent features with CNN-LSTM for Youtube popularity prediction

被引:0
|
作者
Sangwan, Neeti [1 ,2 ]
Bhatnagar, Vishal [3 ]
机构
[1] GGS Indraprastha Univ, New Delhi, India
[2] Maharaja Surajmal Insitute Technol, New Delhi, India
[3] Ambedkar Inst Adv Commun Technol & Res, NSUT East Campus, New Delhi, India
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Popularity; Prediction; Regression; Deep learning; VIDEOS; MODEL;
D O I
10.1038/s41598-025-86785-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As digital media grows, there is an increasing demand for engaging content that can captivate audiences. Along with that, the monetary conversion of those engaging videos is also increased. This leads to the way for more content-driven videos, which can generate revenue. YouTube is the most popular platform which shared the revenue from advertisement to video publisher. This paper focuses on the work of video popularity prediction of the YouTube data. The idea of mapping the video features into low-dimensional space to get the latent features is presented. This mapping is achieved by a novel multi-branch child-parent Long Short Term Memory (LSTM) network. These latent features train the fused Convolutional Neural Network (CNN) with LSTM to predict the popularity of unseen videos on the trained deep learning network. We compared our results against Linear Regression (LR), Support Vector Regression (SVR) and Fully Convolutional Networks (FCN) with LSTM. A significant improvement with a 50% reduction in MAE and a 0.61% increase in the coefficient of determination (R-2) has been observed by the proposed Multi branch LSTM encoded features with a fused deep learning predictor (MLEF-DL predictor) when compared to existing methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Research on Parking Space Detection and Prediction Model Based on CNN-LSTM
    Xu, Zhuye
    Tang, Xiao
    Ma, Changxi
    Zhang, Renshuai
    IEEE ACCESS, 2024, 12 : 30085 - 30100
  • [42] Landslide displacement prediction based on the ICEEMDAN, ApEn and the CNN-LSTM models
    Li, Li-min
    Wang, Chao-yang
    Wen, Zong-zhou
    Gao, Jian
    Xia, Meng-fan
    JOURNAL OF MOUNTAIN SCIENCE, 2023, 20 (05) : 1220 - 1231
  • [43] Fast Prediction of Urban Flooding Water Depth Based on CNN-LSTM
    Chen, Jian
    Li, Yaowei
    Zhang, Shanju
    WATER, 2023, 15 (07)
  • [44] Intelligent water quality prediction system with a hybrid CNN-LSTM model
    Guo, Hui
    Chen, Zhiyuan
    Teo, Fang Yenn
    WATER PRACTICE AND TECHNOLOGY, 2024, 19 (11) : 4538 - 4555
  • [45] An Efficient Hybrid LSTM-CNN and CNN-LSTM with GloVe for Text Multi-class Sentiment Classification in Gender Violence
    Ismail, Abdul Azim
    Yusoff, Marina
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 853 - 863
  • [46] Sinter Quality Prediction Based on Multi-Features CNN plus LSTM
    Zhao, Zhiwei
    Feng, Weijian
    Liu, Song
    Xiong, Zhijian
    Zhao, Yadi
    Zhang, Huiyan
    Wang, Weifang
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (03) : 4271 - 4286
  • [47] AUV 3D Trajectory Prediction Based on CNN-LSTM
    Li, Juan
    Li, Wenbo
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1227 - 1232
  • [48] Temporal Transfer Learning for Ozone Prediction based on CNN-LSTM Model
    Deng, Tuo
    Manders, Astrid
    Segers, Arjo
    Bai, Yanqin
    Lin, Hai Xiang
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 1005 - 1012
  • [49] Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach
    Li, Peifeng
    Zhang, Jin
    Krebs, Peter
    WATER, 2022, 14 (06)
  • [50] RUL Prediction of DC Contactor Using CNN-LSTM With Channel Attention and Fusion of Dual Aggregated Features
    Wang, Sai
    Zhang, Yuanfeng
    Huang, Hao
    Shi, Yun
    Si, Jianfei
    IEEE ACCESS, 2025, 13 : 35634 - 35644