Unfitted finite element method for the quad-curl interface problem

被引:0
|
作者
Guo, Hailong [1 ]
Zhang, Mingyan [2 ]
Zhang, Qian [3 ]
Zhang, Zhimin [4 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金;
关键词
Quad-curl problem; Interface problem; Unfitted mesh; Stabilized finite element methods; Ghost penalty; Discrete divergence-free; ELLIPTIC-EQUATIONS; FAMILY;
D O I
10.1007/s10444-024-10213-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a novel unfitted finite element method to solve the quad-curl interface problem. We adapt Nitsche's method for curlcurl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\operatorname {curl}}{\operatorname {curl}}$$\end{document}-conforming elements and double the degrees of freedom on interface elements. To ensure stability, we incorporate ghost penalty terms and a discrete divergence-free term. We establish the well-posedness of our method and demonstrate an optimal error bound in the discrete energy norm. We also analyze the stiffness matrix's condition number. Our numerical tests back up our theory on convergence rates and condition numbers.
引用
收藏
页数:30
相关论文
共 50 条
  • [11] Superconvergence of a Nonconforming Brick Element for the Quad-Curl Problem
    Zhou, Xinchen
    Meng, Zhaoliang
    Niu, Hexin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (06)
  • [12] Weak Galerkin finite element methods for quad-curl problems
    Wang, Chunmei
    Wang, Junping
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 428
  • [13] A curl-conforming weak Galerkin method for the quad-curl problem
    Sun, Jiguang
    Zhang, Qian
    Zhang, Zhimin
    BIT NUMERICAL MATHEMATICS, 2019, 59 (04) : 1093 - 1114
  • [14] A curl-conforming weak Galerkin method for the quad-curl problem
    Jiguang Sun
    Qian Zhang
    Zhimin Zhang
    BIT Numerical Mathematics, 2019, 59 : 1093 - 1114
  • [15] Fully H(gradcurl)-nonconforming finite element method for the singularly perturbed quad-curl problem on cubical meshes
    Wang, Lixiu
    Zhang, Mingyan
    Zhang, Qian
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025,
  • [16] A Hybridizable Discontinuous Galerkin Method for the Quad-Curl Problem
    Gang Chen
    Jintao Cui
    Liwei Xu
    Journal of Scientific Computing, 2021, 87
  • [17] A Hybridizable Discontinuous Galerkin Method for the Quad-Curl Problem
    Chen, Gang
    Cui, Jintao
    Xu, Liwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
  • [18] Gradient recovery based finite element methods for the two-dimensional quad-curl problem
    Fang, Yuzhi
    Feng, Yuan
    Xu, Minqiang
    Zhang, Lei
    APPLIED MATHEMATICS LETTERS, 2023, 146
  • [19] A Mixed Finite Element Scheme for Quad-Curl Source and Eigenvalue Problems
    Chen, Huangxin
    Li, Jingzhi
    Qiu, Weifeng
    Wang, Chao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (04) : 1125 - 1151
  • [20] Analysis of an interior penalty DG method for the quad-curl problem
    Chen, Gang
    Qiu, Weifeng
    Xu, Liwei
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 2990 - 3023