Unfitted finite element method for the quad-curl interface problem

被引:0
|
作者
Guo, Hailong [1 ]
Zhang, Mingyan [2 ]
Zhang, Qian [3 ]
Zhang, Zhimin [4 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金;
关键词
Quad-curl problem; Interface problem; Unfitted mesh; Stabilized finite element methods; Ghost penalty; Discrete divergence-free; ELLIPTIC-EQUATIONS; FAMILY;
D O I
10.1007/s10444-024-10213-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a novel unfitted finite element method to solve the quad-curl interface problem. We adapt Nitsche's method for curlcurl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\operatorname {curl}}{\operatorname {curl}}$$\end{document}-conforming elements and double the degrees of freedom on interface elements. To ensure stability, we incorporate ghost penalty terms and a discrete divergence-free term. We establish the well-posedness of our method and demonstrate an optimal error bound in the discrete energy norm. We also analyze the stiffness matrix's condition number. Our numerical tests back up our theory on convergence rates and condition numbers.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] A linear edge finite element method for quad-curl problem
    Wang, Chao
    Cui, Jintao
    Sun, Zhengjia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 : 99 - 108
  • [2] A new error analysis of a mixed finite element method for the quad-curl problem
    Wang, Chao
    Sun, Zhengjia
    Cui, Jintao
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 : 23 - 38
  • [3] A Hodge Decomposition Finite Element Method for the Quad-Curl Problem on Polyhedral Domains
    Brenner, Susanne C.
    Cavanaugh, Casey
    Sung, Li-yeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (03)
  • [4] The curl-curl conforming virtual element method for the quad-curl problem
    Zhao, Jikun
    Zhang, Bei
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (08): : 1659 - 1690
  • [5] A Finite Element Method by Patch Reconstruction for the Quad-Curl Problem Using Mixed Formulations
    Li, Ruo
    Liu, Qicheng
    Zhao, Shuhai
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2025, 17 (02) : 517 - 537
  • [6] A DPG method for the quad-curl problem
    Fuhrer, Thomas
    Herrera, Pablo
    Heuer, Norbert
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 149 : 221 - 238
  • [7] A Nonconforming Finite Element Method for the Quad-Curl Hodge-Laplacian Problem in Two Dimensions
    Tong, Siyuan
    Zhai, Qilong
    Zhang, Qian
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (02)
  • [8] Error Analysis of a Decoupled Finite Element Method for Quad-Curl Problems
    Cao, Shuhao
    Chen, Long
    Huang, Xuehai
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [9] Error Analysis of a Decoupled Finite Element Method for Quad-Curl Problems
    Shuhao Cao
    Long Chen
    Xuehai Huang
    Journal of Scientific Computing, 2022, 90
  • [10] Robust mixed finite element methods for a quad-curl singular perturbation problem
    Huang, Xuehai
    Zhang, Chao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451