On Weighted Compactness of Commutators of Bilinear Vector-valued Singular Integral Operators and Applications

被引:0
|
作者
Li, Zhengyang [1 ]
Lu, Liu [1 ]
Liao, Fanghui [2 ]
Xue, Qingying [3 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Computat Sci, Xiangtan 411201, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Weighted compactness; commutators; multilinear square functions; Fourier multiplier operator;
D O I
10.1007/s10114-025-3465-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a bilinear vector-valued singular integral operator satisfies some mild regularity conditions, which may not fall under the scope of the theory of standard Calderon-Zygmund classes. For any b(->)=(b(1), b(2))is an element of(CMO(R-n))(2), let [T, b(j)](ej) (j=1, 2), [T, b(->)](alpha) be the commutators in the j-th entry and the iterated commutators of T, respectively. In this paper, for all p(0) > 1, p0/2<p)](alpha) are weighted compact operators from L-p1(w(1))xL(p2)(w(2)) to L-p(nu w(->)), where w(->)=(w(1), w(2))is an element of A(p)(->)/p0 and nu w(->)=w(1)(p/p1)w(2)(p/p2). As applications, we obtain the weighted compactness of commutators in the j-th entry and the iterated commutators of several kinds of bilinear Littlewood-Paley square operators with some mild kernel regularity, including bilinear g function, bilinear g(lambda)* function and bilinear Lusin's area integral. In addition, we also get the weighted compactness of commutators in the j-th entry and the iterated commutators of bilinear Fourier multiplier operators, and bilinear square Fourier multiplier operators associated with bilinear g function, bilinear g(lambda)* function and bilinear Lusin's area integral, respectively.
引用
收藏
页码:169 / 190
页数:22
相关论文
共 50 条
  • [21] Compactness of the commutators of homogeneous singular integral operators
    Guo XiaoLi
    Hu GuoEn
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (11) : 2347 - 2362
  • [22] Characterization of Compactness of the Commutators of Bilinear Fractional Integral Operators
    Chaffee, Lucas
    Torres, Rodolfo H.
    POTENTIAL ANALYSIS, 2015, 43 (03) : 481 - 494
  • [23] Characterization of Compactness of the Commutators of Bilinear Fractional Integral Operators
    Lucas Chaffee
    Rodolfo H. Torres
    Potential Analysis, 2015, 43 : 481 - 494
  • [24] BILINEAR DECOMPOSITIONS AND COMMUTATORS OF SINGULAR INTEGRAL OPERATORS
    Luong Dang Ky
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (06) : 2931 - 2958
  • [25] Weighted Fréchet–Kolmogorov Theorem and Compactness of Vector-Valued Multilinear Operators
    Qingying Xue
    Kôzô Yabuta
    Jingquan Yan
    The Journal of Geometric Analysis, 2021, 31 : 9891 - 9914
  • [26] Weighted Frechet-Kolmogorov Theorem and Compactness of Vector-Valued Multilinear Operators
    Xue, Qingying
    Yabuta, Kozo
    Yan, Jingquan
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) : 9891 - 9914
  • [27] WEIGHTED SHARP INEQUALITY FOR VECTOR-VALUED MULTILINEAR SINGULAR INTEGRAL OPERATOR
    Zhao, Qiaozhen
    Wang, Junfeng
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (03): : 281 - 293
  • [28] SHARP WEIGHTED BOUNDEDNESS FOR VECTOR-VALUED MULTILINEAR SINGULAR INTEGRAL OPERATOR
    Zhou, Xiaosha
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2012, 27 (03): : 345 - 356
  • [29] Some BMO estimates for vector-valued multilinear singular integral operators
    Liu, LZ
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (02): : 167 - 190
  • [30] Some BMO estimates for vector-valued multilinear singular integral operators
    Lanzhe L.
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2005, 115 (2): : 167 - 190