Immobilized Saccharomyces cerevisiae viable cells for electrochemical biosensing of Cu(II)

被引:0
|
作者
Wahid, Ehtisham [1 ]
Ocheja, Ohiemi Benjamin [2 ]
Oguntomi, Sunday Olakunle [3 ]
Pan, Run [3 ]
Grattieri, Matteo [4 ,5 ]
Guaragnella, Nicoletta [2 ]
Guaragnella, Cataldo [1 ]
Marsili, Enrico [3 ]
机构
[1] Polytech Bari, DEI Dept Elect & Informat Engn, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari, Dept Biosci Biotechnol & Environm, Via E Orabona 4, I-70125 Bari, Italy
[3] Univ Nottingham Ningbo China, Nottingham Ningbo China Beacons Excellence Res & I, Ningbo, Peoples R China
[4] Univ Bari, Dept Chem, Via E Orabona 4, I-70125 Bari, Italy
[5] CNR, Inst Physicochem Proc CNR IPCF, Via E Orabona 4, I-70125 Bari, Italy
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Polydopamine; Biosensors; Bioremediation; Saccharomyces cerevisiae; Extracellular electron transfer; ESCHERICHIA-COLI; COPPER; ELECTRODE; GROWTH;
D O I
10.1038/s41598-025-86702-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity. Alternatively, semiconductive biocompatible coatings can be used for viable cell immobilization, achieving reproducible coverage and resulting in a stable biosensor response. In this work, we use a polydopamine (PDA)-based coating to immobilize Saccharomyces cerevisiae yeast viable cells on carbon screen printed electrodes (SPE) for Cu(II) detection, with potassium ferricyanide (K3[Fe (CN)6]) as a redox mediator. Under these conditions, the current output correlates with Cu (II) concentration, reaching a limit of detection of 2.2 mu M, as calculated from the chronoamperometric response. The bioelectrochemical results are supported by standard viability assays, microscopy, and electrochemical impedance spectroscopy. The PDA coatings can be functionalised with different mutant strains, thus expanding the toolbox for biosensor design in bioremediation.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Characterization of the Viable but Nonculturable (VBNC) State in Saccharomyces cerevisiae
    Salma, Mohammad
    Rousseaux, Sandrine
    Sequeira-Le Grand, Anabelle
    Divol, Benoit
    Alexandre, Herve
    PLOS ONE, 2013, 8 (10):
  • [42] Dynamic adsorption on Pb2+ and Cu2+ by dead immobilized saccharomyces cerevisiae
    Fan, C. H.
    Zhang, Y.
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 3, 2008, : 234 - 238
  • [43] Combined use of immobilized Candida stellata cells and Saccharomyces cerevisiae to improve the quality of wines
    Ciani, M
    Ferraro, L
    JOURNAL OF APPLIED MICROBIOLOGY, 1998, 85 (02) : 247 - 254
  • [44] Mead Production Using Immobilized Cells of Saccharomyces cerevisiae: Reuse of Sodium Alginate Beads
    Sousa-Dias, Miguel L.
    Paula, Vanessa Branco
    Dias, Luis G.
    Estevinho, Leticia M.
    PROCESSES, 2021, 9 (04)
  • [45] Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae cells immobilized on clinoptilolite
    Peyvandi, Shima
    Faghihian, Hossein
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2014, 301 (02) : 537 - 543
  • [46] Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae
    Djordjevic, Radovan
    Gibson, Brian
    Sandell, Mari
    de Billerbeck, Gustavo M.
    Bugarski, Branko
    Leskosek-Cukalovic, Ida
    Vunduk, Jovana
    Nikicevic, Ninoslav
    Nedovic, Viktor
    YEAST, 2015, 32 (01) : 271 - 279
  • [47] Effect of agitation on ethanol production by immobilized Saccharomyces cerevisiae cells in carob pod extract
    Oziyci, Hatice Reyhan
    Yatmaz, Ercan
    Turhan, Irfan
    CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 : S147 - S147
  • [48] Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti
    Krisch, J
    Szajani, B
    BIOTECHNOLOGY LETTERS, 1997, 19 (06) : 525 - 528
  • [49] ANALYSIS OF DISTRIBUTED GROWTH OF SACCHAROMYCES-CEREVISIAE CELLS IMMOBILIZED IN POLYACRYLAMIDE-GEL
    BURRILL, HN
    BELL, LE
    GREENFIELD, PF
    DO, DD
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1983, 46 (03) : 716 - 721
  • [50] Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae cells immobilized on clinoptilolite
    Shima Peyvandi
    Hossein Faghihian
    Journal of Radioanalytical and Nuclear Chemistry, 2014, 301 : 537 - 543