Annihilator on prime rings admitting multiplicative generalized g-derivations

被引:0
|
作者
Kumar K. [1 ]
Mishra A.K. [2 ]
机构
[1] Mathematics, GLA University, Uttar Pradesh, Mathura
[2] Mathematics, Gandhi Smarak P.G. College, Samodhpur, Jaunpur
关键词
16N60; 316W25; g-derivation; Generalized g-derivation; Prime ring; Utumi ring of quotients;
D O I
10.1007/s11565-024-00510-y
中图分类号
学科分类号
摘要
Suppose ℜ is a ring and g:ℜ→Qr be an arbitrary map. An additive map d:ℜ→Qr is said to be g-derivation if d(xy)=d(x)y+g(x)d(y) holds forallx,y∈ℜ. An additive map G:ℜ→Qr is said to be generalized g-derivation if G(xy)=G(x)y+g(x)d(y) holds forallx,y∈ℜ. For any subset S of ℜ, S⊆ℜ. The left annihilator of S in ℜ is denoted by lℜ(S) and defined by lℜ(S)={x∈ℜ∣xS=0}. In the present paper, we study the left annihilator identities on prime rings admitting multiplicative generalized g-derivations. © The Author(s) under exclusive license to Università degli Studi di Ferrara 2024.
引用
收藏
页码:1405 / 1416
页数:11
相关论文
共 50 条
  • [41] Generalized derivations of prime rings
    Albas, E
    Argaç, N
    ALGEBRA COLLOQUIUM, 2004, 11 (03) : 399 - 410
  • [42] Generalized Derivations in Prime Rings
    吴伟
    宛昭勋
    Transactions of Tianjin University, 2011, 17 (01) : 75 - 78
  • [43] On Generalized (α, β)-Derivations in Prime Rings
    Marubayashi, Hidetoshi
    Ashraf, Mohammad
    Rehman, Nadeem-ur
    Ali, Shakir
    ALGEBRA COLLOQUIUM, 2010, 17 : 865 - 874
  • [44] Generalized Derivations in Prime Rings
    吴伟
    宛昭勋
    Transactions of Tianjin University, 2011, (01) : 75 - 78
  • [45] Generalized multiplicative derivations and commutativity of 3-prime near-rings
    Ashraf, Mohammad
    Siddeeque, Mohammad Aslam
    AFRIKA MATEMATIKA, 2019, 30 (3-4) : 571 - 580
  • [46] Generalized multiplicative derivations and commutativity of 3-prime near-rings
    Mohammad Ashraf
    Mohammad Aslam Siddeeque
    Afrika Matematika, 2019, 30 : 571 - 580
  • [47] Some results on prime rings with multiplicative derivations
    Sandhu, Gurninder Singh
    Camci, Didem Karalarlioglu
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (04) : 1401 - 1411
  • [48] Generalized Multiplicative α-skew Derivations on Rings
    Boua, A.
    Ashraf, M.
    Abdelwanis, A. Y.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [49] On semiprime rings with multiplicative (generalized)-derivations
    Khan S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (1): : 119 - 128
  • [50] A RESULT ON GENERALIZED DERIVATIONS IN PRIME RINGS
    Du, Yiqiu
    Wang, Yu
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (01): : 81 - 85